如圖,平面平面=直線,內(nèi)不同的

兩點,內(nèi)不同的兩點,且直線,

分別是線段的中點.下列判斷正確的是

A.當時,兩點不可能重合

B.兩點可能重合,但此時直線不可能相交

C.當相交,直線平行于時,直線可以與相交

D.當是異面直線時,直線可能與平行

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(理科)如圖的多面體是底面為平行四邊形的直四棱柱ABCD-A1B1C1D1,經(jīng)平面AEFG所截后得到的圖形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.
精英家教網(wǎng)
(Ⅰ)求證:BD⊥平面ADG;
(Ⅱ)求平面AEFG與平面ABCD所成銳二面角的余弦值.

(文科)如圖,AB為圓O的直徑,點E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求證:AF⊥平面CBF;
(Ⅱ)設FC的中點為M,求證:OM∥平面DAF.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(07年北京卷理)(本小題共14分)

如圖,在中,,斜邊可以通過以直線為軸旋轉(zhuǎn)得到,且二面角是直二面角.動點的斜邊上.

(I)求證:平面平面

(II)當的中點時,求異面直線所成角的大;

(III)求與平面所成角的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:黑龍江省10-11學年高一下學期期末考試數(shù)學(理) 題型:解答題

(本小題滿分12分)如圖,在直三棱柱中,、分別是、的中  點,點上,

求證:(1)EF∥平面ABC;           

(2)平面平面.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年湖北省、鐘祥一中高三第二次聯(lián)考數(shù)學理卷 題型:解答題

(12分)如圖所示,在直三棱柱ABC-A1B1C1中,AB=BB1,AC1⊥平面A1BD,D為AC的中點。

    (1)求證:B1C1⊥平面ABB1A1;

    (2)在CC1上是否存在一點E,使得∠BA1E=45°,若存在,試確定E的位置,并判斷平面A1BD與平面BDE是否垂直?若不存在,請說明理由。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年湖北省、鐘祥一中高三第二次聯(lián)考數(shù)學理卷 題型:解答題

(12分)如圖所示,在直三棱柱ABC-A1B1C1中,AB=BB1,AC1⊥平面A1BD,D為AC的中點。

    (1)求證:B1C1⊥平面ABB1A1;

    (2)在CC1上是否存在一點E,使得∠BA1E=45°,若存在,試確定E的位置,并判斷平面A1BD與平面BDE是否垂直?若不存在,請說明理由。

 

查看答案和解析>>

同步練習冊答案