已知,且f(-1)=7,則f(1)=   
【答案】分析:令F(x)=f(x)-3,則F(x)為奇函數(shù).由f(-1)=7求得F(-1)的值,可得 F(1)的值,從而求得f(1)的值.
解答:解:令F(x)=f(x)-3=,則F(x)為奇函數(shù).
由f(-1)=7可得 F(-1)=4,∴F(1)=-F(1)=-4,即 F(1)=f(1)-3=-4,
∴f(1)=-1,
故答案為-1.
點(diǎn)評(píng):本題主要考查利用函數(shù)的奇偶性求函數(shù)的值,求出F(1)=-F(1)=-4,是解題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:江西師大附中2009屆高三上學(xué)期期中考試(數(shù)學(xué)文) 題型:022

已知,且f-1(x)的對(duì)稱(chēng)中心是(-1,2),則a的值是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:河北省衡水中學(xué)2012屆高三上學(xué)期一調(diào)考試數(shù)學(xué)文科試題 題型:044

已知函數(shù)且f(4)

(1)求m的值;

(2)判定f(x)的奇偶性;

(3)判斷f(x)在(0,+∞)上的單調(diào)性,并給予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)數(shù)學(xué)公式且f(1)=5.
(1)求a的值;
(2)判斷函數(shù)f(x)在(2,+∞)上的單調(diào)性,并用單調(diào)性定義證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河南省安陽(yáng)市湯陰一中高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)且f(1)=5.
(1)求a的值;
(2)判斷函數(shù)f(x)在(2,+∞)上的單調(diào)性,并用單調(diào)性定義證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案