如圖,已知直角梯形所在的平面垂直于平面

(1)的中點(diǎn)為,求證∥面

(2)求平面與平面所成的銳二面角的余弦值

 

 

 

【答案】

(1)在直角梯形中,,

    ………………………………(2分)

設(shè)的中點(diǎn)為,連結(jié),的中點(diǎn)

   從而 ……………………(4分)

∥面 ……………………(6分)

(2)(法一)以為坐標(biāo)原點(diǎn),分別為軸、軸方向建立空間直角坐標(biāo)系,分別求出平面與平面的法向量,利用夾角的余弦值,來確定銳二面角的余弦值,可得    ……………………(12分)

(法二)不難證明,平面與平面的交線平行于,因此分別過的平行線,兩線交于

         

是平面與平面所成銳二面角的平面角.

設(shè),則

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知直角梯形A1所在的平面垂直于平面B1,C1,D1,AB1?.
(1)在直線AB1C上是否存在一點(diǎn)D1E?,使得AB1C平面∴?請證明你的結(jié)論;
(2)求平面D1E與平面ACB1所成的銳二面角B1C2+B1E2=4=CE2的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知直角梯形ACDE所在的平面垂直于平面ABC,∠BAC=∠ACD=90°,∠EAC=60°,AB=AC=AE.
(1)在直線BC上是否存在一點(diǎn)P,使得DP∥平面EAB?請證明你的結(jié)論;
(2)求平面EBD與平面ABC所成的銳二面角θ的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知直角梯形ACDE所在的平面垂直于平面ABC,∠BAC=∠ACD=90°∠EAC=60°,AB=AC=AE=2.
(Ⅰ)在直線BC上是否存在一點(diǎn)P,使得DP∥平面EAB?請證明你的結(jié)論;
(Ⅱ)求平面EBD與平面ABC所成的銳二面角θ的余弦值;
(Ⅲ)求三棱錐C-BDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年貴州省五校高三第四次聯(lián)考數(shù)學(xué)理卷 題型:解答題

(本小題滿分12分)

如圖,已知直角梯形ACDE所在的平面垂直于平面ABC,∠BAC=∠ACD=90O,∠EAC=600,ABACAE

(1)在直線BC上是否存在一點(diǎn)P,使得DP∥平面EAB?請證明你的結(jié)論;

(2)求平面EBD與平面ABC所成的銳二面角的大小。

 

查看答案和解析>>

同步練習(xí)冊答案