【題目】若冬季晝夜溫差x(單位:)與某新品種反季節(jié)大豆的發(fā)芽數(shù)量y(單位:顆)具有線性相關關系,根據(jù)一組樣本數(shù)據(jù),用最小二乘法近似得到回歸直線方程為,則下列結論中不正確的是(

A.yx具有正相關關系

B.回歸直線過點

C.若冬季晝夜溫差增加,則該新品種反季節(jié)大豆的發(fā)芽數(shù)約增加2.5

D.若冬季晝夜溫差的大小為,則該新品種反季節(jié)大豆的發(fā)芽數(shù)一定是22

【答案】D

【解析】

根據(jù)線性回歸方程的相關計算,結合題意,進行逐一分析即可.

因為回歸直線的斜率為2.5,所以yx具有正相關關系,A正確;

回歸直線經過樣本中心點,故過點,B正確;

冬季晝夜溫差增加,則發(fā)芽數(shù)量的增加量即為回歸直線方程的斜率,

則該新品種反季節(jié)大豆的發(fā)芽數(shù)約增加2.5顆,C正確;

回歸直線方程只可預測,不是確定的值,故D錯誤.

故選:D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調性;

(2)時,,求的最大整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax+lnx(a∈R),g(x)=x2emx(m∈R,e為自然對數(shù)的底數(shù)).

(1)討論函數(shù)f(x)的單調性及最值;

(2)若a>0,且對x1,x2∈[0,2],f(x1+1)≥g(x2)+a﹣1恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“大眾創(chuàng)業(yè),萬眾創(chuàng)新”是李克強總理在本屆政府工作報告中向全國人民發(fā)出的口號.某生產企業(yè)積極響應號召,大力研發(fā)新產品,為了對新研發(fā)的一批產品進行合理定價,將該產品按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù),如表所示:

試銷單價(元)

4

5

6

7

8

9

產品銷量(件)

q

84

83

80

75

68

已知.

(Ⅰ)求出的值;

(Ⅱ)已知變量具有線性相關關系,求產品銷量(件)關于試銷單價(元)的線性回歸方程

(Ⅲ)用表示用(Ⅱ)中所求的線性回歸方程得到的與對應的產品銷量的估計值.當銷售數(shù)據(jù)對應的殘差的絕對值時,則將銷售數(shù)據(jù)稱為一個“好數(shù)據(jù)”.現(xiàn)從6個銷售數(shù)據(jù)中任取2個,求“好數(shù)據(jù)”至少有一個的概率.

(參考公式:線性回歸方程中,的最小二乘估計分別為,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的一個焦點為,離心率為.為橢圓的左頂點,為橢圓上異于的兩個動點,直線與直線分別交于兩點.

(I)求橢圓的方程;

(II)若的面積之比為,求的坐標;

(III)設直線軸交于點,若三點共線,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的導函數(shù),且,.

1)求的解析式,并判斷零點的個數(shù);

2)若,且對任意的恒成立,求k的最大值.(參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在全國第五個扶貧日到來之前,某省開展精準扶貧,攜手同行的主題活動,某貧困縣調查基層干部走訪貧困戶數(shù)量.甲鎮(zhèn)有基層干部60人,乙鎮(zhèn)有基層干部60人,丙鎮(zhèn)有基層干部80人,每人都走訪了若干貧困戶,按照分層抽樣,從甲、乙、丙三鎮(zhèn)共選20名基層干部,統(tǒng)計他們走訪貧困戶的數(shù)量,并將走訪數(shù)量分成,,,,5組,繪制成如圖所示的頻率分布直方圖.

1)求這20人中有多少人來自丙鎮(zhèn),并估計甲、乙、丙三鎮(zhèn)的基層干部走訪貧困戶戶數(shù)的中位數(shù)(精確到整數(shù)位);

2)如果把走訪貧困戶達到或超過35戶視為工作出色,求選出的20名基層干部中工作出色的人數(shù),并從中選2人做交流發(fā)言,求這2人中至少有一人走訪的貧困戶在的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知點O(0,0),M(-4,0),N(4,0),P(0,-2),Q(0,2),H(4,2).線段OM上的動點A滿足;線段HN上的動點B滿足.直線PA與直線QB交于點L,設直線PA的斜率記為k,直線QB的斜率記為k',則kk'的值為______;當λ變化時,動點L一定在______(填“圓、橢圓、雙曲線、拋物線”之中的一個)上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱中,為棱的中點,.

(1)證明:平面;

(2)設二面角的正切值為,,求異面直線所成角的余弦值.

查看答案和解析>>

同步練習冊答案