已知O是直線AB外一點,平面OAB上一點C滿足
OC
=2
OA
+3
OB
,P
是線段AB和OC的交點,則|
AP
|:|
PB
|
=
3:2
3:2
分析:由三點共線可得
OC
OP
,再由P、A、B三點共線可得
2
λ
+
3
λ
=1
,代入由向量的運算可得
AP
=
AO
+
OP
=
3
5
AB
,進而可得答案.
解答:解:由題意可得O、P、C三點共線,所以
OC
OP
=2
OA
+3
OB

OP
=
2
λ
OA
+
3
λ
OB
,又因為P、A、B三點共線,
所以
2
λ
+
3
λ
=1
,解得λ=5,故
OP
=
2
5
OA
+
3
5
OB
,
AP
=
AO
+
OP
=-
3
5
OA
+
3
5
OB
=
3
5
AB

所以|
AP
|:|
PB
|
=3:2
故答案為:3:2
點評:本題考查平行向量和共線向量,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

16、已知真命題:若A為⊙O內(nèi)一定點,B為⊙O上一動點,線段AB的垂直平分線交直線OB于點P,則點P的軌跡是
O、A為焦點,OB長為長軸長的橢圓
.類比此命題,寫出另一個真命題:若A為⊙O外一定點,B為⊙O上一動點,線段AB的垂直平分線交直線OB于點P,則點P的軌跡是
以O(shè),A為焦點,OB為實軸長的雙曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)
A.(不等式選做題)不等式|x+1|≥|x+2|的解集為
 

B.(幾何證明選做題)如圖所示,過⊙O外一點P作一條直線與⊙O交于A,B兩點,
已知PA=2,點P到⊙O的切線長PT=4,則弦AB的長為
 

C.(坐標系與參數(shù)方程選做題)若直線3x+4y+m=0與圓
x=1+cosθ
y=-2+sinθ
(θ為參數(shù))沒有公共點,則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年陜西省咸陽市高考模擬考試數(shù)學(xué)試卷((理科)(解析版) 題型:解答題

(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)
A.(不等式選做題)不等式|x+1|≥|x+2|的解集為   
B.(幾何證明選做題)如圖所示,過⊙O外一點P作一條直線與⊙O交于A,B兩點,
已知PA=2,點P到⊙O的切線長PT=4,則弦AB的長為   
C.(坐標系與參數(shù)方程選做題)若直線3x+4y+m=0與圓(θ為參數(shù))沒有公共點,則實數(shù)m的取值范圍是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年陜西省咸陽市高考數(shù)學(xué)模擬試卷(文科)(解析版) 題型:解答題

(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)
A.(不等式選做題)不等式|x+1|≥|x+2|的解集為   
B.(幾何證明選做題)如圖所示,過⊙O外一點P作一條直線與⊙O交于A,B兩點,
已知PA=2,點P到⊙O的切線長PT=4,則弦AB的長為   
C.(坐標系與參數(shù)方程選做題)若直線3x+4y+m=0與圓(θ為參數(shù))沒有公共點,則實數(shù)m的取值范圍是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年遼寧省沈陽市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知真命題:若A為⊙O內(nèi)一定點,B為⊙O上一動點,線段AB的垂直平分線交直線OB于點P,則點P的軌跡是    .類比此命題,寫出另一個真命題:若A為⊙O外一定點,B為⊙O上一動點,線段AB的垂直平分線交直線OB于點P,則點P的軌跡是   

查看答案和解析>>

同步練習(xí)冊答案