“函數(shù)f(x)=x2+2x+m存在零點(diǎn)”的一個(gè)必要不充分條件是( 。
A、m≤1B、m≤2
C、m≤0D、1≤m≤2
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)存在零點(diǎn)的等價(jià)條件求出對(duì)應(yīng)的充要條件,根據(jù)充分條件和必要條件的定義進(jìn)行判斷即可得到結(jié)論.
解答: 解:若函數(shù)f(x)=x2+2x+m存在零點(diǎn),則對(duì)應(yīng)的判別式△=4-4m≥0,
解得m≤1,
則m≤2是m≤1的一個(gè)必要不充分條件,
故選:B.
點(diǎn)評(píng):本題主要考查充分條件和必要條件的判斷,利用函數(shù)存在零點(diǎn)的等價(jià)條件是解決本題的關(guān)鍵.比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩位同學(xué)約定晚飯6點(diǎn)到7點(diǎn)之間在食堂見(jiàn)面,先到之人等后到之人十五分鐘,則甲、乙兩人能見(jiàn)面的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知中心在原點(diǎn)、焦點(diǎn)在x軸上的橢圓C1與雙曲線C2有共同的焦點(diǎn),設(shè)左右焦點(diǎn)分別為F1,F(xiàn)2,P是C1與C2在第一象限的交點(diǎn),△PF1F2是以PF1為底邊的等腰三角形,若橢圓與雙曲線的離心率分別為e1,e2,則e1•e2的取值范圍是( 。
A、(
1
9
,+∞)
B、(
1
5
,+∞)
C、(
1
3
,+∞)
D、(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有紅、藍(lán)、黃、綠四種顏色的球各6個(gè),每種顏色的6個(gè)球分別標(biāo)有數(shù)字1、2、3、4、5、6,從中任取3個(gè)標(biāo)號(hào)不同的球,這3個(gè)顏色互不相同且所標(biāo)數(shù)字互不相鄰的取法種數(shù)為( 。
A、80B、84C、96D、104

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a>0,b>0,c>0下列不等關(guān)系不恒成立的是( 。
A、c3+c+1>c2+
1
4
c-1
B、|a-b|≤|a-c|+|b-c|
C、若a+4b=1,則
1
a
+
1
b
>6.8
D、ax2+bx+c≥0(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)g(x)=
1
3
x3+
1
2
ax2-bx,(a,b∈R)在其圖象上一點(diǎn)P(x,y)處的切線的斜率記為f(x).
(Ⅰ)若方程f(x)=0有兩個(gè)實(shí)根分別為-2和4,求
4
-2
f(x)dx;
(Ⅱ)若g(x)在區(qū)間[-1,3]上是單調(diào)遞減函數(shù),求a2+b2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙、丙三人中要選一人去參加唱歌比賽,于是他們制定了一個(gè)規(guī)則,規(guī)則為:(如圖)以O(shè)為起點(diǎn),再?gòu)腁1,A2,A3,A4,A5,這5個(gè)點(diǎn)中任取兩點(diǎn)分別為終點(diǎn)得到兩個(gè)向量,記這兩個(gè)向量的數(shù)量積為X,若X>0就讓甲去;若X=0就讓乙去;若X<0就是丙去.
(Ⅰ)寫出數(shù)量積X的所有可能取值;
(Ⅱ)求甲、乙、丙三人去參加比賽的概率,并由求出的概率來(lái)說(shuō)明這個(gè)規(guī)則公平嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知直線l的參數(shù)方程為
x=5+at
y=-1-t
 (t
為參數(shù)),圓C的極坐標(biāo)方程為ρ=2
2
cos(θ-
π
4
)

(Ⅰ)若圓C關(guān)于直線l對(duì)稱,求a的值;
(Ⅱ)若圓C與直線l相切,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在矩形ABCD中,AB=3,BC=4,PA⊥平面ABCD,且PA=1,PE⊥BD,E為垂足,則PE的長(zhǎng)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案