動(dòng)圓M過定點(diǎn)A(-
,0),且與定圓A´:(
x-
)
2+
y2=12相切.
(1)求動(dòng)圓圓心M的軌跡C的方程;
(2)過點(diǎn)P(0,2)的直線
l與軌跡C交于不同的兩點(diǎn)E、F,求
的取值范圍.
(1)
(2)
試題分析:(1)A´(
,0),依題意有|MA´|+
=2
|MA´|+|MA|
=2
>2
3分
∴點(diǎn)M的軌跡是以A´、A為焦點(diǎn),2
為長(zhǎng)軸上的橢圓,∵
a=
,
c=
∴
b2=1.因此點(diǎn)M的軌跡方程為
5分
(2) 解:設(shè)
l的方程為
x=
k(
y-2)代入
,消去
x得:(
k2+3)
y2-4
k2y+4
k2-3=0
由△>0得16
k4-(4
k2-3)(
k2+3)>0
0≤
k2<1 7分
設(shè)E(
x1,
y1),F(xiàn)(
x2,
y2),
則
y1+
y2=
,
y1y2=
又
=(
x1,
y1-2),
=(
x2,
y2-2)
∴
·
=
x1x2+(
y1-2)(
y2-2)
=
k(
y1-2)·
k (
y2-2) +(
y1-2)(
y2-2)
=(1+
k2)
=
10分
∵0≤
k2<1 ∴3≤
k2+3<4 ∴
·
∈
12分
點(diǎn)評(píng):求軌跡方程大體步驟:1建立坐標(biāo)系,設(shè)出所求點(diǎn),2,找到動(dòng)點(diǎn)滿足的關(guān)系,3關(guān)系式坐標(biāo)化整理化簡(jiǎn),4去除不滿足要求的點(diǎn)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
圓心在直線x=2上的圓C與y軸交于A(0,-4),B(0,-2)兩點(diǎn);
(1)求圓C的方程;
(2)直線l:y=ax+1與圓C相交所得的弦長(zhǎng)為2,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知?jiǎng)訄AC與圓
及圓
都內(nèi)切,則動(dòng)圓圓心C的軌跡方程為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知拋物線
經(jīng)過圓
的圓心,則拋物線E的準(zhǔn)線與圓F相交所得的弦長(zhǎng)為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知圓C過點(diǎn)A(1,0)和B(3,0),且圓心在直線
上,則圓C的標(biāo)準(zhǔn)方程為
。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
若圓
與圓
關(guān)于直線
對(duì)稱,則
的方程為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
圓
和
的位置關(guān)系為( )
A.外切 | B.內(nèi)切 | C.外離 | D.內(nèi)含 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
圓x
2+y
2+8x-4y=0與圓x
2+y
2=20關(guān)于直線y=kx+b對(duì)稱,則k與b的值分別等于( )
A.k=-2,b=5 | B.k=2,b=5 |
C.k=2,b=-5 | D.k=-2,b=-5 |
查看答案和解析>>