6.已知平面ABCD⊥平面ADEF,AB⊥AD,CD⊥AD,且AB=1,AD=CD=2.ADEF是正方形,在正方形ADEF內(nèi)部有一點(diǎn)M,滿足MB,MC與平面ADEF所成的角相等,則點(diǎn)M的軌跡長(zhǎng)度為$\frac{4}{9}$π.

分析 由題意,MB,MC與平面ADEF所成的角相等,AB=1,CD=2,可得MD=2MA.以AF為x軸,AD為y軸建立坐標(biāo)系,求出M的軌跡,即可得出結(jié)論.

解答 解:由題意,MB,MC與平面ADEF所成的角相等,AB=1,CD=2,
∴MD=2MA.
以AF為x軸,AD為y軸建立坐標(biāo)系,則A(0,0),D(0,2),
設(shè)M(x,y)(x>0,.y>0),則x2+(y-2)2=4x2+4y2,即x2+(y+$\frac{2}{3}$)2=$\frac{16}{9}$,
在第一象限所對(duì)的圓心角為$\frac{π}{3}$,弧長(zhǎng)為$\frac{π}{3}•\frac{4}{3}$=$\frac{4}{9}π$,
故答案為:$\frac{4}{9}π$.

點(diǎn)評(píng) 本題考查軌跡方程,考查線面角,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(3a-1)x+4a,x<1}\\{{a}^{x},x≥1}\end{array}\right.$是(-∞,+∞)上的減函數(shù),那么a的取值范圍是( 。
A.(0,1)B.(0,$\frac{1}{3}$)C.[$\frac{1}{6}$,$\frac{1}{3}$)D.($\frac{1}{6}$,$\frac{1}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=lnx-ax2在x=1處的切線與直線x-y+1=0垂直.
(Ⅰ)求函數(shù)y=f(x)+xf′(x)(f′(x)為f(x)的導(dǎo)函數(shù))的單調(diào)遞增區(qū)間;
(Ⅱ)記函數(shù)g(x)=f(x)+$\frac{3}{2}$x2-(1+b)x,設(shè)x1,x2(x1<x2)是函數(shù)g(x)的兩個(gè)極值點(diǎn),若b≥$\frac{{e}^{2}+1}{e}$-1,且g(x1)-g(x2)≥k恒成立,求實(shí)數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知${({x-\sqrt{3}})^{2017}}={a_0}{x^{2017}}+{a_1}{x^{2016}}+…+{a_{2016}}x+{a_{2017}}$,則${({{a_0}+{a_2}+…+{a_{2016}}})^2}-{({{a_1}+{a_3}+…+{a_{2017}}})^2}$的值為22017

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知f(x)=|x-1|+|x+a|,g(a)=a2-a-2.
(1)當(dāng)a=3,解關(guān)于x的不等式f(x)>g(a)+2;
(2)當(dāng)x∈[-a,1)時(shí)恒有f(x)≤g(a),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下列函數(shù)中,在(0,+∞)內(nèi)為增函數(shù)的是(  )
A.y=sin xB.y=xe2C.y=x3-xD.y=ln x-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知關(guān)于x的不等式 alnx>1-$\frac{1}{x}$對(duì)任意x∈(1,+∞)恒成立,則實(shí)數(shù)a的取值范圍是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.設(shè)函數(shù)f(x)=(x+2)ex
(1)求f(x)的單調(diào)區(qū)間;
(2)當(dāng)x≥0時(shí),恒有$\frac{f(x)-{e}^{x}}{ax+1}$≥1,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.如圖,在邊長(zhǎng)為2的正三角形ABC中,點(diǎn)P從點(diǎn)A出發(fā),沿A→B→C→A的方向前進(jìn),然后再回到點(diǎn)A,在此過(guò)程中,即點(diǎn)P走過(guò)的路程為x,點(diǎn)P到點(diǎn)A,B,C的距離之和為f(x),則函數(shù)y=f(x)的大致圖象為( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案