【題目】某企業(yè)節(jié)能降耗技術改造后,在生產(chǎn)某產(chǎn)品過程中幾錄的產(chǎn)量x(噸)與相應的生產(chǎn)能耗y(噸)的幾 組對應數(shù)據(jù)如表所示:

x

3

4

5

6

y

2.5

3

4

a

若根據(jù)表中數(shù)據(jù)得出y關于x的線性回歸方程為 =0.7x+0.35,則表中a的值為(
A.3
B.3.15
C.3.5
D.4.5

【答案】D
【解析】解:由題意可知:產(chǎn)量x的平均值為 = =4.5,由線性回歸方程為 =0.7x+0.35,過樣本中心點( , ), 則 =0.7 +0.35=0.7×4.5+0.35=3.5,解得: =3.5,
= =3.5,解得:a=4.5,
表中a的值為4.5,
故選:D.
由線性回歸方程必過樣本中心點( , ),則 =3.5,即 =3.5,即可求得a的值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)是定義在R上恒不為零的函數(shù),且對任意的x、y∈R都有f(x)f(y)=f(x+y),若a1= ,an=f(n)(n∈N*),則數(shù)列{an}的前n項和Sn的取值范圍是(
A.[ ,1)
B.[ ,1]
C.( ,1)
D.( ,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 且a1=1,Sn+1﹣2Sn=1(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=n+ ,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為研究質(zhì)量x(單位:g)對彈簧長度y(單位:cm)的影響,對不同質(zhì)量的6根彈簧進行測量,得到如下數(shù)據(jù):

x (g)

5

10

15

20

25

30

y (cm)

7.25

8.12

8.95

9.90

10.9

11.8


(1)畫出散點圖;
(2)如果散點圖中的各點大致分布在一條直線的附近,求y與x之間的回歸方程. ( 其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)f(x)=2sin( )(﹣2<x<10)的圖象與x軸交于點A,過點A的直線l與函數(shù)的圖象交于B、C兩點,則( + =(
A.﹣32
B.﹣16
C.16
D.32

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某算法的程序框圖如圖所示,其中輸入的變量1,2,3,…,2424個整數(shù)中等可能隨機產(chǎn)生.

()分別求出按程序框圖正確編程運行時輸出的值為的概率 (=1,2,3);

()甲、乙兩同學依據(jù)自己對程序框圖的理解,各自編寫程序重復運行n次后,統(tǒng)計記錄了輸出的值為 (=1,2,3)的頻數(shù).以下是甲、乙所作頻數(shù)統(tǒng)計表的部分數(shù)據(jù).

甲的頻數(shù)統(tǒng)計表(部分)

運行

次數(shù)n

輸出y的值

1的頻數(shù)

輸出y的值

2的頻數(shù)

輸出y的值

3的頻數(shù)

30

14

6

10

2 100

1 027

376

697

乙的頻數(shù)統(tǒng)計表(部分)

運行

次數(shù)n

輸出y的值

1的頻數(shù)

輸出y的值

2的頻數(shù)

輸出y的值

3的頻數(shù)

30

12

11

7

2 100

1 051

696

353

n=2100,根據(jù)表中的數(shù)據(jù),分別寫出甲、乙所編程序各自輸出的值為 (=1,2,3)的頻率(用分數(shù)表示),并判斷兩位同學中哪一位所編寫程序符合算法要求的可能性較大.

()將按程序框圖正確編寫的程序運行3,求輸出的值為2的次數(shù)ξ的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A、B是拋物線W: 上的兩個動點,F是拋物線W的焦點, 是坐標原點,且恒有.

(1)若直線OA的傾斜角為時,求線段AB的中點C的坐標;

(2)求證直線AB經(jīng)過一定點,并求出此定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

Ⅰ)若函數(shù)在區(qū)間(其中)上存在極值,求實數(shù)的取值范圍.

Ⅱ)如果當時,不等式恒成立,求實數(shù)的取值范圍.

Ⅲ)求證

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,平面,,底面是梯形,,,

(1)求證:平面平面;

(2)設為棱上一點,,試確定的值使得二面角

查看答案和解析>>

同步練習冊答案