【題目】某工廠(chǎng)隨機(jī)抽取部分工人調(diào)查其上班路上所需時(shí)間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),若上班路上所需時(shí)間的范圍是[0,100],樣本數(shù)據(jù)分組為[0,20),[20,40),[40,60),[60,80),[80,100].

(1)求直方圖中a的值;
(2)如果上班路上所需時(shí)間不少于1小時(shí)的工人可申請(qǐng)?jiān)诠S(chǎng)住宿,若招工2400人,請(qǐng)估計(jì)所招工人中有多少名工人可以申請(qǐng)住宿;
(3)該工廠(chǎng)工人上班路上所需的平均時(shí)間大約是多少分鐘.

【答案】
(1)解:由頻率分布直方圖可得:

0.125×20+a×20+0.0065×20+0.003×2×20=1,

解得:a=0.025


(2)解:工人上班所需時(shí)間不少于1小時(shí)的頻率為:

0.003×2×20=0.12,

因?yàn)?400×0.12=288,

所以所招2400名工人中有288名工人可以申請(qǐng)住宿


(3)解:該工廠(chǎng)工人上班路上所需的平均時(shí)間為:

10×0.25+30×0.5+50×0.13+70×0.06+90×0.06=33.6(分鐘)


【解析】(1)根據(jù)頻率和為1,列出方程求出a的值;(2)計(jì)算工人上班所需時(shí)間不少于1小時(shí)的頻率,求出對(duì)應(yīng)的頻數(shù)即可;(3)利用各小組底邊中點(diǎn)坐標(biāo)×對(duì)應(yīng)頻率,再求和,即可得出平均時(shí)間.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用頻率分布直方圖的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握頻率分布表和頻率分布直方圖,是對(duì)相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過(guò)作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)過(guò)定點(diǎn)P(2,1).
(1)求經(jīng)過(guò)點(diǎn)P且在兩坐標(biāo)軸上的截距相等的直線(xiàn)方程;
(2)若過(guò)點(diǎn)P的直線(xiàn)l與x軸和y軸的正半軸分別交于A(yíng),B兩點(diǎn),求△AOB面積的最小值及此時(shí)直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿(mǎn)足3(n+1)an=nan+1(n∈N*),且a1=3,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{an}的前n項(xiàng)和Sn;
(3)若 = ,求證: + +…+ <1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知遞增的等差數(shù)列{an},首項(xiàng)a1=2,Sn為其前n項(xiàng)和,且2S1 , 2S2 , 3S3成等比數(shù)列.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若sin2 A+sin2 B=sin2C+sin AsinB,ccosB=b(1﹣cosC).

(1)判斷△ABC的形狀;
(2)在△ABC的邊AB,AC上分別取D,E兩點(diǎn),使沿線(xiàn)段DE折疊三角形時(shí),頂點(diǎn)A正好落在邊BC上的P點(diǎn)處,設(shè)∠BDP=θ,當(dāng)AD最小時(shí),求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-5:不等式選講

已知,且.

(1)求的最小值;

(2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若方程 所表示的曲線(xiàn)為C,給出下列四個(gè)命題:
①若C為橢圓,則1<t<4;
②若C為雙曲線(xiàn),則t>4或t<1;
③曲線(xiàn)C不可能是圓;
④若 ,曲線(xiàn)C為橢圓,且焦點(diǎn)坐標(biāo)為 ;
⑤若t<1,曲線(xiàn)C為雙曲線(xiàn),且虛半軸長(zhǎng)為
其中真命題的序號(hào)為 . (把所有正確命題的序號(hào)都填在橫線(xiàn)上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為測(cè)量山高M(jìn)N,選擇A和另一座山的山頂C為測(cè)量觀(guān)測(cè)點(diǎn).從A點(diǎn)測(cè)得 M點(diǎn)的仰角∠MAN=60°,C點(diǎn)的仰角∠CAB=45°以及∠MAC=75°;從C點(diǎn)測(cè)得∠MCA=60°.已知山高BC=100m,則山高M(jìn)N=m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sin(x﹣ )(x∈R),下面結(jié)論錯(cuò)誤的是(
A.函數(shù)f(x)的最小正周期為2π
B.函數(shù)f(x)在區(qū)間[0, ]上是增函數(shù)
C.函數(shù)f(x)的圖象關(guān)于直線(xiàn)x=0對(duì)稱(chēng)
D.函數(shù)f(x)是奇函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案