已知直線l與拋物線C,當(dāng)直線ll0開始在平面上繞O點(diǎn)按逆時(shí)針方向勻速旋轉(zhuǎn)(旋轉(zhuǎn)的角度不超過90°)時(shí),它掃過的面積S是時(shí)間t的函數(shù),則函數(shù)圖象大致是

[  ]
A.

B.

C.

D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知M(m,m2)、N(n,n2)是拋物線C:y=x2上兩個不同點(diǎn),且m2+n2=1,m+n≠0,直線l是線段MN的垂直平分線.設(shè)橢圓E的方程為
x2
2
+
y2
a
=1(a>0,a≠2)

(Ⅰ)當(dāng)M、N在拋物線C上移動時(shí),求直線L斜率k的取值范圍;
(Ⅱ)已知直線L與拋物線C交于A、B、兩個不同點(diǎn),L與橢圓E交于P、Q兩個不同點(diǎn),設(shè)AB中點(diǎn)為R,OP中點(diǎn)為S,若
OR
OS
=0
,求橢圓E離心率的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線L與拋物線C:x2=4y相切于點(diǎn)P(2,1),且與x軸交于點(diǎn)A,O為坐標(biāo)原點(diǎn),定點(diǎn)B(2,0)
(1)求點(diǎn)A的橫坐標(biāo).
(2)設(shè)動點(diǎn)M滿足
AB
BM
+
2
|
AM
|=0
,點(diǎn)M的軌跡K.若過點(diǎn)B的直線L1(斜率不等于0)與軌跡K交于不同的兩點(diǎn)E、F(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l與拋物線C,當(dāng)直線l從l0開始在平面上繞O點(diǎn)按逆時(shí)針方向勻速旋轉(zhuǎn)(旋轉(zhuǎn)的角度不超過90°)時(shí),它掃過的面積S是時(shí)間t的函數(shù),則函數(shù)圖象大致是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知以動點(diǎn)P為圓心的圓與直線y=-
1
20
相切,且與圓x2+(y-
1
4
2=
1
25
外切.
(Ⅰ)求動P的軌跡C的方程;
(Ⅱ)若M(m,m1),N(n,n1)是C上不同兩點(diǎn),且 m2+n2=1,m+n≠0,直線L是線段MN的垂直平分線.
    (1)求直線L斜率k的取值范圍;
    (2)設(shè)橢圓E的方程為
x2
2
+
y2
a
=1(0<a<2).已知直線L與拋物線C交于A、B兩個不同點(diǎn),L與橢圓E交于P、Q兩個不同點(diǎn),設(shè)AB中點(diǎn)為R,PQ中點(diǎn)為S,若
OR
OS
=0,求E離心率的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年浙江省壽昌中學(xué)、新安江中學(xué)、嚴(yán)州中學(xué)高三第二次聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知直線L與拋物線C:x2=4y相切于點(diǎn)P(2,1),且與x軸交于點(diǎn)A,O為坐標(biāo)原點(diǎn),定點(diǎn)B(2,0)
(1)求點(diǎn)A的橫坐標(biāo).
(2)設(shè)動點(diǎn)M滿足,點(diǎn)M的軌跡K.若過點(diǎn)B的直線L1(斜率不等于0)與軌跡K交于不同的兩點(diǎn)E、F(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案