對(duì)于三次函數(shù)f(x)=ax
3+bx
2+cx+d(a≠0),定義f″(x)是y=f(x)的導(dǎo)函數(shù)y=f′(x)的導(dǎo)函數(shù),若方程f″(x)=0有實(shí)數(shù)解x
0,則稱(chēng)點(diǎn)(x
0,f(x
0))為函數(shù)y=f(x)的“拐點(diǎn)”,可以證明,任何三次函數(shù)都有“拐點(diǎn)”,任何三次函數(shù)都有對(duì)稱(chēng)中心,且“拐點(diǎn)”就是對(duì)稱(chēng)中心,請(qǐng)你根據(jù)這一結(jié)論判斷下列命題:
①任意三次函數(shù)f(x)=ax
3+bx
2+cx+d(a≠0)都關(guān)于點(diǎn)(-
,f(-
))對(duì)稱(chēng):
②存在三次函數(shù)有兩個(gè)及兩個(gè)以上的對(duì)稱(chēng)中心;
③存在三次函數(shù)f(x)=ax
3+bx
2+cx+d(a≠0),若f′(x)=0有實(shí)數(shù)解x
0,則點(diǎn)(x
0,f(x
0))為函數(shù)y=f(x)的對(duì)稱(chēng)中心;
④若函數(shù)g(x)=
x
3-
x
2-
,則:g(
)+g(
)+g(
)+…+g(
)=-1006.5
其中所有正確結(jié)論的序號(hào)是( 。