18.已知以下四個結(jié)論:
①函數(shù)y=tanx圖象的一個對稱中心為($\frac{π}{2}$,0);
②函數(shù)y=|sinx+1|的最小正周期為π;
③y=sin(2x+$\frac{π}{3}$)的表達式可以改寫為f(x)=cos($\frac{7}{6}$π-2x);
④若A+B=$\frac{π}{4}$,則(1+tanA)(1+tanB)=2.
其中,正確的結(jié)論是( 。
A.①③B.①④C.②③D.②④

分析 由函數(shù)f(x)=tanx圖象的對稱中心為( $\frac{kπ}{2}$,0),k∈Z,即可判斷①的正誤;利用函數(shù)的周期判斷②的正誤;根據(jù)誘導公式,可以判斷③的真假,利用兩角和與差的正切函數(shù)化簡求解,即可判斷④的正誤;

解答 解:函數(shù)f(x)=tanx圖象的對稱中心為($\frac{kπ}{2}$,0),k∈Z,當k=1時,即有($\frac{π}{2}$,0),①成立;
函數(shù)y=|sinx+1|的最小正周期為2π;所以②不正確;
函數(shù)f(x)=sin(2x+$\frac{π}{3}$)=cos[$\frac{π}{2}$-(2x+$\frac{π}{3}$)]=cos(2x-$\frac{π}{6}$),故③不正確;
若A+B=$\frac{π}{4}$,則tan(A+B)=$\frac{tanA+tanB}{1-tanAtanB}$=1,即 tanA+tanB=1-tanAtanB,
∴(1+tanA)(1+tanB)=1+tanA+tanB+tanAtanB=2,故④正確,
故選:B.

點評 本題主要考查正弦函數(shù)、正切函數(shù)的圖象和性質(zhì),屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

20.關(guān)于x的方程(x2-1)2-|x2-1|-k=0,給出下列四個命題:
①存在實數(shù)k,使得方程恰有2個不同的實根;
②存在實數(shù)k,使得方程恰有4個不同的實根;
③存在實數(shù)k,使得方程恰有6個不同的實根;
④存在實數(shù)k,使得方程恰有8個不同的實根.
其中真命題的個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.等差數(shù)列{an}中,若a10-a6=4,a2,a4,a8成等比數(shù)列,則a1=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.在△ABC 中,角A,B,C所對的邊分別為a,b,c,若a=2,b=2,cos(A+B)=$\frac{1}{4}$,則c=( 。
A.$\sqrt{10}$B.$\sqrt{15}$C.3D.$\sqrt{17}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.在△ABC中,角A,B,C的對邊分別為a,b,c,已知a=$\sqrt{3}$,c=$\sqrt{2}$,C=$\frac{π}{4}$,則角B=$\frac{5π}{12}$或$\frac{π}{12}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知$sinα+cosα=\frac{1}{5}$,0≤α≤π,則$\sqrt{2}sin(α-\frac{π}{4})$的值為(  )
A.$\frac{1}{5}$B.$\frac{7}{5}$C.$±\frac{1}{5}$D.$±\frac{7}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}-2,x≤0}\\{f(x-2)+1,x>0}\end{array}\right.$,則f(2018)=1008.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知一個四面體ABCD的每個頂點都在表面積為9π的球O的表面上,且AB=CD=a,AC=AD=BC=BD=$\sqrt{5}$,則a=$2\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在探究“點P0(x0,y0)到直線l:Ax+By+C=0的距離公式”的數(shù)學活動中,小華同學進行了如下思考,并得出以下距離公式:
(Ⅰ)①當A=0時,點P0(x0,y0)到直線l:By+C=0的距離為$\frac{|{By}_{0}+C|}{\sqrt{{B}^{2}}}$;
②當B=0時,點P0(x0,y0)到直線l:Ax+C=0的距離為$\frac{|{Ax}_{0}+C|}{\sqrt{{A}^{2}}}$;
③當A≠0且B≠0時,點P0(x0,y0)到直線l:Ax+By+C=0的距離為$\frac{|{Ax}_{0}+{By}_{0}+C|}{\sqrt{{A}^{2}{+B}^{2}}}$.
(Ⅱ)試證明當A≠0且B≠0時,點P0(x0,y0)到直線l:Ax+By+C=0的距離公式.

查看答案和解析>>

同步練習冊答案