已知二次函數(shù)y=f(x)(x∈R)的圖像是一條開口向下且對(duì)稱軸為x=3的拋物線,試比較大。
(1)f(6)與f(4)
(1) f(6)<f(4);(2)
【解析】
試題分析:
思路分析: (1)結(jié)合y=f(x)的圖像開口向下,及對(duì)稱軸是x=3,得到f(x)的減區(qū)間,比較大小。
(2)結(jié)合y=f(x)的圖像開口向下,及對(duì)稱軸是x=3,得到f(x)的減區(qū)間,比較大小。
解 (1)∵y=f(x)的圖像開口向下,且對(duì)稱軸是x=3,∴x≥3時(shí),f(x)為減函數(shù),又6>4>3,∴f(6)<f(4)
時(shí)為減函數(shù).
考點(diǎn):二次函數(shù)的圖象和性質(zhì)
點(diǎn)評(píng):簡(jiǎn)單題,比較函數(shù)值的大小,往往利用函數(shù)的單調(diào)性。對(duì)二次函數(shù),一般要注意“開口方向,對(duì)稱軸位置,自變量取值距對(duì)稱軸遠(yuǎn)近”等。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:101網(wǎng)校同步練習(xí) 高三數(shù)學(xué) 蘇教版(新課標(biāo)·2004年初審) 蘇教版 題型:044
已知二次函數(shù)y=f(x)經(jīng)過點(diǎn)(0,10),導(dǎo)函數(shù)=2x-5,當(dāng)x∈(n,n+1)(n∈N*)時(shí),f(x)是整數(shù)的個(gè)數(shù),記為an求數(shù)列{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:銀川一中2007屆高三年級(jí)第四次月考測(cè)試數(shù)學(xué)(理)試題 題型:044
已知二次函數(shù)y=f(x)的圖象經(jīng)過原點(diǎn),其導(dǎo)數(shù)為=6x-2.一次函數(shù)為y=g(x),且不等式g(x)>f(x)的解集為{x|<x<1},求f(x)和g(x)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知二次函數(shù)y=f(x)的圖像經(jīng)過坐標(biāo)原點(diǎn),其導(dǎo)函數(shù)為f??(x)=6x-2,數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,Sn)(n∈N*)均在函數(shù)y=f(x)的圖像上.(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;(Ⅱ)設(shè)bn=,Tn是數(shù)列{bn}的前n項(xiàng)和,求使得Tn<對(duì)所有n∈N*都成立的最小正整數(shù)m;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆湖南省高二上學(xué)期第一次階段性考試?yán)砜茢?shù)學(xué)試卷 題型:解答題
已知二次函數(shù)y=f(x)的圖像經(jīng)過坐標(biāo)原點(diǎn),其導(dǎo)函數(shù)為=6x-2,數(shù)列{}的前n項(xiàng)和為,點(diǎn)(n,)(n∈N*)均在函數(shù)y=f(x)的圖像上.(Ⅰ)求數(shù)列{}的通項(xiàng)公式;
(Ⅱ)設(shè),是數(shù)列{}的前n項(xiàng)和,求使得<對(duì)所有
n∈N*都成立的最小正整數(shù)m;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com