20.如圖為某天通過204國道某測速點的汽車時速頻率分布直方圖,則通過該測速點的300輛汽車中時速在[60,80)的汽車大約有150輛.

分析 由頻率分布直方圖求出通過該測速點的300輛汽車中時速在[60,80)的汽車所占頻率,由此能求出通過該測速點的300輛汽車中時速在[60,80)的汽車大約有多少輛.

解答 解:由頻率分布直方圖得:
通過該測速點的300輛汽車中時速在[60,80)的汽車所占頻率為(0.020+0.030)×10=0.5,
∴通過該測速點的300輛汽車中時速在[60,80)的汽車大約有:300×0.5=150輛.
故答案為:150.

點評 本題考查頻數(shù)的求法,考查頻率分布直方圖的應(yīng)用,考查運算求解能力,考查函數(shù)與方程思想、數(shù)形結(jié)合思想,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)x,y,z∈R+,$a=x+\frac{1}{y},b=y+\frac{1}{z},c=z+\frac{1}{x}$,則a,b,c三數(shù)(  )
A.都小于2B.都大于2
C.至少有一個不大于2D.至少有一個不小于2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)集合A={x|0≤x≤3},B={x|x<2},則A∪B=( 。
A.(-∞,2)B.(-∞,3]C.[0,2)D.[0,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.方向向量為$\overrightarrow d=(1,2)$,且過點A(3,4)的直線的一般式方程為2x-y-2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.演繹推理是( 。
A.特殊到一般的推理B.特殊到特殊的推理
C.一般到特殊的推理D.一般到一般的推理

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.現(xiàn)有一只不透明的袋子里面裝有6個小球,其中3個為紅球,3個為黑球,這些小球除顏色外無任何差異,現(xiàn)從袋中一次性地隨機摸出2個小球.
(1)求這兩個小球都是紅球的概率;
(2)記摸出的小球中紅球的個數(shù)為X,求隨機變量X的概率分布及其均值E(X ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知a>0,b>0,0<c<2,ac2+b-c=0,則$\frac{1}{a}$+$\frac{1}$的取值范圍是[4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知隨機變量X~B(3,p),Y~B(4,p),若E(X)=1,則D(Y)的值為$\frac{8}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an]的前n項和記為Sn,且滿足Sn=2an-n,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)證明:$\frac{n}{2}$$-\frac{1}{3}$$<\frac{{a}_{1}}{{a}_{2}}$$+\frac{{a}_{2}}{{a}_{3}}$+…$+\frac{{a}_{n}}{{a}_{n+1}}$$<\frac{n}{2}$(n∈N*)

查看答案和解析>>

同步練習(xí)冊答案