MA |
MB |
MN |
OF |
NQ |
OF |
MA |
MB |
5 |
5 |
p |
2 |
p |
2 |
p |
2 |
x1+x2 |
2 |
y1+y2 |
2 |
|
MA |
MB |
1 |
2p |
1 |
p |
x1 |
p |
x2 |
p |
x12 |
2p |
x1 |
p |
x2 |
p |
x22 |
2p |
|
x1+x2 |
2 |
x1x2 |
2p |
MN |
OF |
NQ |
OF |
MA |
MB |
MA |
MB |
NF |
AB |
x1+x2 ) |
2p |
NF |
AB |
NF |
AB |
p |
2 |
p |
2 |
p |
2 |
x1+x2 |
2 |
y1+y2 |
2 |
|
x12x22 |
4p2 |
p2 |
4 |
MA |
MB |
1 |
2p |
1 |
p |
x1 |
p |
x2 |
p |
x12 |
2p |
x1 |
p |
x1 |
p |
x12 |
2p |
x2 |
p |
x22 |
2p |
|
|
x1+x2 |
2 |
x1x2 |
2p |
NQ |
OF |
p |
2 |
p |
2 |
MN |
OF |
p |
2 |
MN |
OF |
MA |
MB |
MA |
MB |
NF |
AB |
x1+x2 ) |
2p |
NF |
AB |
NF |
AB |
NF |
p2k2+p2 |
5 |
AB |
1 |
2 |
1 |
2 |
5 |
5 |
5 |
5 |
5 |
5 |
5 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
直線AB過拋物線x2=2py(p>0)的焦點(diǎn)F,并與其相交于A、B兩點(diǎn),Q是線段AB的中點(diǎn),M是拋物線的準(zhǔn)線與y軸的交點(diǎn),O是坐標(biāo)原點(diǎn).
(Ⅰ)求的取值范圍;
(Ⅱ)過A、B兩點(diǎn)分別作此拋物線的切線,兩切線相交于N點(diǎn).
求證:;
(Ⅲ)若p是不為1的正整數(shù),當(dāng),△ABN的面積的取值范圍為[5,20]時(shí),求該拋物線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
直線AB過拋物線x2=2py(p>0)的焦點(diǎn)F,并與其相交于A、B兩點(diǎn),Q是線段AB的中點(diǎn),M是拋物線的準(zhǔn)線與y軸的交點(diǎn),O是坐標(biāo)原點(diǎn).
(Ⅰ)求的取值范圍;
(Ⅱ)過A、B兩點(diǎn)分別作此拋物線的切線,兩切線相交于N點(diǎn).
求證:;
(Ⅲ)若p是不為1的正整數(shù),當(dāng),△ABN的面積的取值范圍為[5,20]時(shí),求該拋物線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)求證的取值范圍;
(2)過A、B兩點(diǎn)分別作此拋物線的切線,兩切線相交于N點(diǎn),
求證:;
(3)設(shè)直線AB與x軸、y軸的兩個(gè)交點(diǎn)分別為K和L,當(dāng)=4p2,△ABN的面積的取值范圍限定為[]時(shí),求動(dòng)線段KL的軌跡所形成的平面區(qū)域的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年廣東省高考數(shù)學(xué)第三輪復(fù)習(xí)精編模擬試卷08(理科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com