已知點(diǎn)A,B的坐標(biāo)分別為(-2,3,5)與 (1,-1,-7),則向量數(shù)學(xué)公式的相反向量的坐標(biāo)是


  1. A.
    (-3,4,12)
  2. B.
    (3,-4,-12)
  3. C.
    (-1,2,-2)
  4. D.
    (1,-2,2)
A
分析:先求出向量,進(jìn)而利用相反向量的意義即可得出.
解答:∵點(diǎn)A,B的坐標(biāo)分別為(-2,3,5)與 (1,-1,-7),
==(1,-1,-7)-(-2,3,5)=(3,-4,-12).
=-(3,-4,-12)=(-3,4,12).
故選A.
點(diǎn)評(píng):熟練掌握向量坐標(biāo)的計(jì)算方法和相反向量的意義是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A,B的坐標(biāo)分別是(0,-1),(0,1),直線AM,BM相交于點(diǎn)M,且它們的斜率之積-
12

(1)求點(diǎn)M軌跡C的方程;
(2)若過(guò)點(diǎn)D(2,0)的直線l與(1)中的軌跡C交于不同的兩點(diǎn)D、F(E在D、F之間),試求△ODE與△ODF面積之比的取值范圍(O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【理科生做】已知點(diǎn)A、B的坐標(biāo)分別是(0,-1),(0,1),直線AM、BM相交于點(diǎn)M,且它們的斜率之積為-1.
(1)求點(diǎn)M軌跡C的方程;
(2)若過(guò)點(diǎn)(2,0)且斜率為k的直線l與(1)中的軌跡C交于不同的兩點(diǎn)E、F(E在D、F之間),記△ODE與△ODF面積之比為λ,求關(guān)于λ和k的關(guān)系式,并求出λ取值范圍(O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A,B的坐標(biāo)分別是(-1,0),(1,0),直線AM與BM相交于點(diǎn)M,且直線AM的斜率與BM斜率之差是2,求點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A,B的坐標(biāo)分別是(0,-1),(0,1),直線AM,BM相交于點(diǎn)M,且它們的斜率之積為-
1
2

(1)求點(diǎn)M的軌跡C的方程;
(2)過(guò)D(2,0)的直線l與軌跡C有兩個(gè)不同的交點(diǎn)時(shí),求l的斜率的取值范圍;
(3)若過(guò)D(2,0),且斜率為
14
6
的直線l與(1)中的軌跡C交于不同的E、F(E在D、F之間),求△ODE與△ODF的面積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A、B的坐標(biāo)分別是A(0,-1),B(0,1),直線AM、BM相交于點(diǎn)M,且它們的斜率之積是2,求點(diǎn)M的軌跡方程,并說(shuō)明曲線的類(lèi)型.

查看答案和解析>>

同步練習(xí)冊(cè)答案