已知直線l過雙曲線C的一個焦點,且與C的對稱軸垂直,lC交于A、B兩點,C的實軸長的2倍,則雙曲線C的離心率為(    )

A.             B.2                C.              D.3

 

【答案】

C

【解析】

試題分析:根據(jù)題意,由于直線l過雙曲線C的一個焦點,且與C的對稱軸垂直,可知該焦點坐標(biāo)(-c,0),且可知當(dāng)x=-c時,y= ,那么可知b2=2a2, c2-a2=2a2, c2=3a2,∴e=,選C.

考點:雙曲線的性質(zhì)

點評:本題考查雙曲線的性質(zhì)和應(yīng)用,解題時要注意公式的靈活運用.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點,N為動點,|數(shù)學(xué)公式|=6,數(shù)學(xué)公式=數(shù)學(xué)公式數(shù)學(xué)公式.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1數(shù)學(xué)公式=數(shù)學(xué)公式+數(shù)學(xué)公式,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若數(shù)學(xué)公式=3數(shù)學(xué)公式,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分〉

設(shè)平面直角坐標(biāo)中,O為原點,N為動點,.過點M作丄y軸于,過N作軸于點N1,,記點T的軌跡為曲線C.
(I)求曲線C的方程:

(H)已知直線L與雙曲線C:的右相交于P、Q兩點(其中點P在第—象限).線段OP交軌跡C于A,若,求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過雙曲線C的一個焦點,且與C的對稱軸垂直,l與C交于A,B兩點,為C的實軸長的2倍,C的離心率為

(A)   (B)       (C)  2       (D)  3

查看答案和解析>>

同步練習(xí)冊答案