設(shè)函數(shù)
(1)若函數(shù)f(x)在其定義域內(nèi)是減函數(shù),求a的取值范圍;
(2)函數(shù)f(x)是否有最小值?若有最小值,指出其取得最小值時(shí)x的值,并證明你的結(jié)論.
解:(1)函數(shù)的導(dǎo)數(shù)f'(x)=2x﹣=
∵函數(shù)f(x)在其定義域內(nèi)是減函數(shù)
∴f'(x)≤0在上恒成立
又∵時(shí),2x+1>0
∴不等式2x2+x﹣a≤0在上恒成立,
即a≥2x2+x在上恒成立
令g(x)=2x2+x,,
則g(x)max=g(1)=3
∴a≥3(2)
∵f'(x)=
令f'(x)=0
解得,
由于a>0,,
,
①當(dāng)即0<a<3時(shí),在上f'(x)<0;
在(x2,1)上f'(x)>0,
∴當(dāng)時(shí),函數(shù)f(x)在上取最小值.
②當(dāng)即a≥3時(shí),在[]上f'(x)≤0,
∴當(dāng)x=1時(shí),函數(shù)f(x)在[]上取最小值.
由①②可知,當(dāng)0<a<3時(shí),函數(shù)f(x)在時(shí)取最小值;當(dāng)a≥3時(shí),函數(shù)f(x)在x=1時(shí)取最小值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年四川省遂寧二中實(shí)驗(yàn)學(xué)校高三(上)9月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

設(shè)函數(shù)
(1)若函數(shù)f(x)在(-∞,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)f(x)的單調(diào)遞減區(qū)間為(m,n),且{x|x<0}∩{m,n}≠∅.求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河南省許昌市三校高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)函數(shù)
(1)若函數(shù)f(x)在其定義域內(nèi)是減函數(shù),求a的取值范圍;
(2)函數(shù)f(x)是否有最小值?若有最小值,指出其取得最小值時(shí)x的值,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013學(xué)年安徽省蕪湖市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

設(shè)函數(shù)
(1)若函數(shù)f(x)在x=-1處取得極值-2,求a,b的值.
(2)若函數(shù)f(x)在區(qū)間(-1,1)內(nèi)單調(diào)遞增,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年廣東省深圳市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

設(shè)函數(shù)
(1)若函數(shù)f(x)在其定義域內(nèi)是減函數(shù),求a的取值范圍;
(2)函數(shù)f(x)是否有最小值?若有最小值,指出其取得最小值時(shí)x的值,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案