定義在R上的函數(shù)f(x)滿足f(x+2)=3f(x),當x∈[0,2]時,f(x)=x2-2x+2,則x∈[-4,-2]時,f(x)的最小值為
 
分析:先根據(jù)f(x+2)=3f(x)求出f(x+4)=9f(x),設(shè)x∈[-4,-2],則x+4∈[0,2],代入x∈[0,2]時,f(x)的解析式,即可求出x∈[-4,-2]時,f(x)的解析式,最后求出最值即可.
解答:解:∵f(x+2)=3f(x),
∴f(x+4)=3f(x+2)=9f(x),
設(shè)x∈[-4,-2],則x+4∈[0,2],
∴f(x+4)=(x+4)2-2(x+4)+2=9f(x),
即x∈[-4,-2]時,f(x)=
1
9
(x2+6x+10)
∴x∈[-4,-2]時,f(x)的最小值為
1
9

故答案為:
1
9
點評:本題主要考查了函數(shù)的最值及其幾何意義,同時考查了轉(zhuǎn)化與劃歸的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)既是偶函數(shù)又是周期函數(shù),若f(x)的最小正周期是π,且當x∈[0,
π
2
]時,f(x)=sinx,則f(
3
)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

20、已知定義在R上的函數(shù)f(x)=-2x3+bx2+cx(b,c∈R),函數(shù)F(x)=f(x)-3x2是奇函數(shù),函數(shù)f(x)在x=-1處取極值.
(1)求f(x)的解析式;
(2)討論f(x)在區(qū)間[-3,3]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足:f(x+2)=
1-f(x)1+f(x)
,當x∈(0,4)時,f(x)=x2-1,則f(2010)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值與最小值的差為4,相鄰兩個最低點之間距離為π,函數(shù)y=sin(2x+
π
3
)圖象所有對稱中心都在f(x)圖象的對稱軸上.
(1)求f(x)的表達式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
,
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)的圖象是連續(xù)不斷的,且有如下對應(yīng)值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函數(shù)f(x)一定存在零點的區(qū)間是(  )

查看答案和解析>>

同步練習(xí)冊答案