若直線ly="k" x經(jīng)過(guò)點(diǎn),則直線l的傾斜角為α =       

 

【答案】

【解析】

試題分析:因?yàn)橹本ly="k" x經(jīng)過(guò)點(diǎn),所以,所以α =。

考點(diǎn):直線的傾斜角。

點(diǎn)評(píng):注意直線傾斜角的取值范圍:。兩向量夾角范圍為。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知點(diǎn)A(2,0),點(diǎn)M為曲線y=
x+2
上任意一點(diǎn),點(diǎn)P為AM的中點(diǎn);點(diǎn)P的軌跡為C;
(1)求動(dòng)點(diǎn)P的軌跡C的方程F(x,y)=0;
(2)將軌跡C的方程變形為函數(shù)y=f(x);請(qǐng)寫出此函數(shù)的定義域、值域、單調(diào)區(qū)間、奇偶性、最值等(不證明),并畫出大致圖象.
(3)若直線l:y=
x
10
+1
與軌跡C有兩個(gè)不同的公共點(diǎn)B,K,且點(diǎn)G的坐標(biāo)為(
1
8
,0)
,求|BG|+|KG|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文科)點(diǎn)M是圓x2+y2=4上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)M作MD垂直于x軸,垂足為D,P為線段MD的中點(diǎn).
(1)求點(diǎn)P的軌跡方程;
(2)設(shè)點(diǎn)P的軌跡為C,若直線l:y=-ex+m(其中e為曲線C的離心率)與曲線C有兩個(gè)不同的交點(diǎn)A與B且
OA
OB
=2
(其中O為坐標(biāo)原點(diǎn)),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
y2
a2
+
x2
b2
=1
(a>b>0)的上、下焦點(diǎn)分別為F1,F(xiàn)2,在x軸上的兩個(gè)端點(diǎn)分別為A,B.且四邊形F1AF2B是邊長(zhǎng)為1的正方形.
(1)求橢圓C的離心率及其標(biāo)準(zhǔn)方程;
(2)若直線l與y軸交于點(diǎn)P(0,m),與橢圓C交于相異的兩點(diǎn)MN,且
MP
=3
PN
,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l:x=my+1過(guò)橢圓C:
x2
a2
+
y2
b2
=1
的右焦點(diǎn)F,拋物線x2=4
3
y
的焦點(diǎn)為橢圓C的上頂點(diǎn),且直線l交橢圓C于A,B兩點(diǎn),點(diǎn)A,F(xiàn),B在直線x=4上的射影依次為點(diǎn)D,K,E.
(1)求橢圓C的方程;
(2)若直線l交y軸于點(diǎn)M,且
MA
=λ1
AF
,
MB
=λ2
BF
,當(dāng)m變化時(shí),證明:λ1+λ2=-
8
3

(3)連接AE,BD,試探索當(dāng)m變化時(shí),直線AE與BD是否相交于定點(diǎn)?若是,求出定點(diǎn)的坐標(biāo),并給出證明;否則,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案