函數(shù)f(x)滿足f(x+2)=x2+3,則f(x)=
x2-4x+7
x2-4x+7
分析:利用配湊法或者換元法求解該類函數(shù)的解析式,注意復合函數(shù)中的自變量與簡單函數(shù)自變量之間的聯(lián)系與區(qū)別.
解答:解:由f(x+2)=x2+3,
得到f(x+2)
=(x+2-2)2+3
=(x+2)2-4(x+2)+7
故f(x)=x2-4x+7.
故答案為:x2-4x+7.
點評:本題考查函數(shù)解析式的求解,考查學生的整體意識和換元法的思想.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•菏澤二模)已知定義在R上的奇函數(shù)f(x)滿足f(x+2e)=-f(x)(其中e=2.7182…),且在區(qū)間[e,2e]上是減函數(shù).令a=
ln2
2
,
ln3
3
,c=
ln5
5
,則( 。

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年湖北省荊州中學高三(上)第一次質量檢測數(shù)學試卷 (理科)(解析版) 題型:選擇題

已知定義域為R的函數(shù)f(x)滿足f(-x)=-f(x+4),則x>2時,f(x)單調遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年湖南省湘西州邊城高級中學高三(上)月考數(shù)學試卷(解析版) 題型:選擇題

已知定義域為R的函數(shù)f(x)滿足f(-x)=-f(x+4),則x>2時,f(x)單調遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年湖南省湘西州古丈縣補習學校高三(上)第一次月考數(shù)學試卷(理科)(解析版) 題型:選擇題

已知定義域為R的函數(shù)f(x)滿足f(-x)=-f(x+4),則x>2時,f(x)單調遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

科目:高中數(shù)學 來源:2013年山東省菏澤市高考數(shù)學二模試卷(文科)(解析版) 題型:選擇題

已知定義在R上的奇函數(shù)f(x)滿足f(x+2e)=-f(x)(其中e=2.7182…),且在區(qū)間[e,2e]上是減函數(shù).令a=,,c=,則( )
A.f(a)<f(b)<f(c)
B.f(b)<f(c)<f(a)
C.f(c)<f(a)<f(b)
D.f(c)<f(b)<f(a)

查看答案和解析>>

同步練習冊答案