精英家教網 > 高中數學 > 題目詳情
(2013•懷化二模)若數列{an}滿足a1=1,a2=2,anan-2=an-1(n≥3),則a2013的值為( 。
分析:由遞推式可求出a3,a4,a5,a6,a7的值,可知該數列具有周期性且得周期,從而可得答案.
解答:解:由anan-2=an-1,得an=
an-1
an-2
(n≥3),
所以a3=
a2
a1
=2,a4=
a3
a2
=
2
2
=1,a5=
a4
a3
=
1
2
,a6=
a5
a4
=
1
2
a7=
a6
a5
=1
,…,
可知數列{an}具有周期性,周期為6,
所以a2013=a6×335+3=a3=2,
故選A.
點評:本題考查數列的概念及簡單表示法,考查數列的函數特性,屬中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•懷化二模)過雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點F作與x軸垂直的直線,分別與雙曲線及其漸近線交于點M,N(均在第一象限內),若|FM|=4|MN|,則雙曲線的離心率為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•懷化二模)如圖所示,四棱錐P-ABCD,底面ABCD是邊長為2的正方形,PA⊥面ABCD,PA=2,過點A作AE⊥PB,AF⊥PC,連接EF.
(1)求證:PC⊥面AEF;
(2)若面AEF交側棱PD于點G(圖中未標出點G),求多面體P-AEFG的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•懷化二模)在平面直角坐標系xoy中,已知橢圓x2+
y2b2
=1(0<b<1)的左焦點為F,左、右頂點分別為A,C,上頂點為B,過B,C,F三點作圓P.
(Ⅰ)若線段CF是圓P的直徑,求橢圓的離心率;
(Ⅱ)若圓P的圓心在直線x+y=0上,求橢圓的方程;
(Ⅲ)若直線y=x+t交(Ⅱ)中橢圓于M,N,交y軸于Q,求|MN|•|OQ|的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•懷化二模)若不等式組
x>1
y>x+1
x+y<a
所確定的平面區(qū)域的面積為0,則實數a的取值范圍為
a≤3
a≤3

查看答案和解析>>

同步練習冊答案