如圖所示,某房地產(chǎn)開發(fā)公司計劃在一樓區(qū)內(nèi)建造一個長方形公園ABCD,公園由長方形的休閑區(qū)(陰影部分)和環(huán)公園人行道組成。已知休閑區(qū)的面積為4000 m 2,人行道的寬分別為4 m和10 m。
(1)設(shè)休閑區(qū)的長m ,
求公園ABCD所占面積關(guān)于
x 的函數(shù)的解析式;
(2)要使公園ABCD所占總面積最小,
休閑區(qū)的長和寬該如何設(shè)計?
科目:高中數(shù)學 來源: 題型:
1 | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
4 |
3 |
2 |
3 |
2 |
3 |
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年山東省日照市高三12月校際聯(lián)考理科數(shù)學試卷(解析版) 題型:解答題
某建筑公司要在一塊寬大的矩形地面(如圖所示)上進行開發(fā)建設(shè),陰影部分為一公共設(shè)施不能建設(shè)開發(fā),且要求用欄柵隔開(欄柵要求在直線上),公共設(shè)施邊界為曲線的一部分,欄柵與矩形區(qū)域的邊界交于點M、N,切曲線于點P,設(shè).
(I)將(O為坐標原點)的面積S表示成f的函數(shù)S(t);
(II)若,S(t)取得最小值,求此時a的值及S(t)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆福建省高二上學期期中考試文科數(shù)學試卷(解析版) 題型:解答題
(本小題滿分12分)如圖所示,某房地產(chǎn)開發(fā)公司計劃在一樓區(qū)內(nèi)建造一個長方形公園ABCD,公園由長方形的休閑區(qū)(陰影部分)和環(huán)公園人行道組成.已知休閑區(qū)的面積為4000 m 2,人行道的寬分別為4 m和10 m.
( I )設(shè)休閑區(qū)的長m ,求公園ABCD所占面積關(guān)于 x 的函數(shù)的解析式;
(Ⅱ)要使公園ABCD所占總面積最小,休閑區(qū)的長和寬該如何設(shè)計?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com