【題目】觀察下列等式: (sin )﹣2+(sin )﹣2= ×1×2;
(sin )﹣2+(sin )﹣2+(sin )﹣2+sin( )﹣2= ×2×3;
(sin )﹣2+(sin )﹣2+(sin )﹣2+…+sin( )﹣2= ×3×4;
(sin )﹣2+(sin )﹣2+(sin )﹣2+…+sin( )﹣2= ×4×5;
…
照此規(guī)律,
(sin )﹣2+(sin )﹣2+(sin )﹣2+…+(sin )﹣2= .
【答案】 n(n+1)
【解析】解:觀察下列等式: (sin )﹣2+(sin )﹣2= ×1×2;
(sin )﹣2+(sin )﹣2+(sin )﹣2+sin( )﹣2= ×2×3;
(sin )﹣2+(sin )﹣2+(sin )﹣2+…+sin( )﹣2= ×3×4;
(sin )﹣2+(sin )﹣2+(sin )﹣2+…+sin( )﹣2= ×4×5;
…
照此規(guī)律(sin )﹣2+(sin )﹣2+(sin )﹣2+…+(sin )﹣2= ×n(n+1),
所以答案是: n(n+1)
【考點精析】解答此題的關鍵在于理解歸納推理的相關知識,掌握根據(jù)一類事物的部分對象具有某種性質(zhì),退出這類事物的所有對象都具有這種性質(zhì)的推理,叫做歸納推理.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,點A1在平面ABC內(nèi)的射影O為AC的中點,A1O=2,AB⊥BC,AB=BC= 點P在線段A1B上,且cos∠PAO= ,則直線AP與平面A1AC所成角的正弦值為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義域為[0,e]的函數(shù)f(x)同時滿足: ①對于任意的x∈[0,e],總有f(x)≥0;
②f(e)=e;
③若x1≥0,x2≥0,x1+x2≤e,則恒有f(x1+x2)≥f(x1)+f(x2).
(1)求f(0)的值;
(2)證明:不等式f(x)≤e對任意x∈[0,e]恒成立;
(3)若對于任意x∈[0,e],總有4f2(x)﹣4(2e﹣a)f(x)+4e2﹣4ea+1≥0,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如果把直角三角形的三邊都增加同樣的長度,則這個新的三角形的形狀為( )
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.由增加的長度決定
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的離心率e= ,左頂點、上頂點分別為A,B,△OAB的面積為3(點O為坐標原點).
(1)求橢圓C的方程;
(2)若P、Q分別是AB、橢圓C上的動點,且 =λ (λ<0),求實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知t>0,函數(shù)f(x)= ,若函數(shù)g(x)=f(f(x)﹣1)恰有6個不同的零點,則實數(shù)t的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,∠A、∠B、∠C所對的邊長分別是a、b、c.若sinC+sin(B﹣A)=sin2A,則△ABC的形狀為( )
A.等腰三角形
B.直角三角形
C.等腰直角三角形
D.等腰三角形或直角三角形
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】不等式x2﹣4x>2ax+a對一切實數(shù)x都成立,則實數(shù)a的取值范圍是( )
A.(1,4)
B.(﹣4,﹣1)
C.(﹣∞,﹣4)∪(﹣1,+∞)
D.(﹣∞,1)∪(4,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知b+c=2acosB. (Ⅰ)證明:A=2B
(Ⅱ)若△ABC的面積S= ,求角A的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com