已知橢圓的中心在原點(diǎn),準(zhǔn)線方程為x=±4,如果直線:3x-2y=0與橢圓的交點(diǎn)在x軸上的射影恰為橢圓的焦點(diǎn).
(1)求橢圓方程;
(2)設(shè)直線與橢圓的一個(gè)交點(diǎn)為P,F(xiàn)是橢圓的一個(gè)焦點(diǎn),試探究以PF為直徑的圓與橢圓長軸為直徑的圓的位置關(guān)系;
(3)把(2)的情況作一推廣:寫出命題(不要求證明)
解:(1)設(shè)橢圓方程為 (a>b>0)
直線3x-2y=0與橢圓的一個(gè)交點(diǎn)的坐標(biāo)是,代入橢圓方程得:
又 a2=b2+c2
∴ a=2 C=1
∴ ………………5分
(2)由(1)知,直線與橢圓的一個(gè)交點(diǎn)為,F(xiàn)(1,0),則從PF為直徑的圓的方程,圓心為,半徑為
以橢圓長軸為直徑的圓的方程為x2+y2=4,圓心(0,0),半徑為2
兩圓圓心之間距離為
∴ 兩圓內(nèi)切 ………………8分
P、F為其它三種情況時(shí),兩圓都為內(nèi)切 ………………10分
(3)如果橢圓的方程是 (a>b>0),P是橢圓上的任意一點(diǎn),F(xiàn)是橢圓的一個(gè)焦點(diǎn),則以PF長為直徑的圓與以橢圓長軸為直徑的圓是內(nèi)切關(guān)系。 …………13分
(如P寫成橢圓上的定點(diǎn),此問只給1分)
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| ||
2 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
10 | 11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
25 | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
2 |
3 |
4 |
3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com