已知拋物線y2=2px(p>0)的焦點(diǎn)為F,F(xiàn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為P.過F作x軸的垂線交拋物線于M,N兩點(diǎn).有下列四個(gè)命題:
①△PMN必為直角三角形;②△PMN不一定為直角三角形;③直線PM必與拋物線相切;④直線PM不一定與拋物線相切.
其中正確的命題是(  )
A、①③B、①④C、②③D、②④
考點(diǎn):命題的真假判斷與應(yīng)用
專題:圓錐曲線的定義、性質(zhì)與方程
分析:本題考查拋物線的定義和標(biāo)準(zhǔn)方程的有關(guān)知識(shí),先由拋物線方程求出M,N的坐標(biāo),然后判斷△PMN是否為為直角三角形,求出直線PM的方程,然后判斷是否相切.
解答: 解:拋物線方程為y2=2px(p>0),焦點(diǎn)為F(
p
2
,0),則P點(diǎn)坐標(biāo)為(-
p
2
,0),可求出點(diǎn)M(
p
2
,p),N(
p
2
,-p),
所以|PF|=
1
2
,|MN|=p,所以∠MPN=90°,所以①正確,
又直線PM方程與拋物線方程聯(lián)立:
y=x+
p
2
y2=2px
,得x2-px+
p2
4
=0,其判別式△=0
所以直線PM必與拋物線相切.所以③正確.
綜上①③正確.
故選A.
點(diǎn)評(píng):拋物線y2=2px(p>0)為標(biāo)準(zhǔn)方程,解題關(guān)鍵是根據(jù)標(biāo)準(zhǔn)方程求出M,N坐標(biāo).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

命題“對(duì)任意實(shí)數(shù)x,2x>m(x2+1)”是真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

盒子中裝有大小相同的6只小球,其中2只紅球,4只黑球.規(guī)定:一次摸出2只球,如果這2只球是同色的,就獎(jiǎng)勵(lì).若有3人參加摸球游戲,每人摸一次,摸后放回,記隨機(jī)變量ξ為獲獎(jiǎng)勵(lì)的人數(shù),則Eξ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷下列各點(diǎn)是否在方程4x2+3y2=12的曲線上:
(1)P(
3
,0);
(2)Q(-2,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)(a,1)在直線x-2y+4=0的右下方,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(1+x)-
ax
x+1
(a>0).
(1)實(shí)數(shù)a為何值時(shí),使得f(x)在(0,+∞)內(nèi)單調(diào)遞增;
(2)證明:(
2014
2015
2015
1
e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x+a|+|x-a|.
(Ⅰ)求滿足f(1)≥3的實(shí)數(shù)a的取值范圍;
(Ⅱ)若f(x)≥2對(duì)任意實(shí)數(shù)x都成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,a2=4,a3+a4=14,bn=3 an
(1)證明:{bn}為等比數(shù)列;
(2)求數(shù)列{nbn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在我市的一項(xiàng)競(jìng)賽活動(dòng)中,某縣的三所學(xué)校分別有1名、2名、3名學(xué)生獲獎(jiǎng),這6名學(xué)生排成一排合影,要求同校任意兩名學(xué)生不能相鄰,那么不同的排法有
 
種.(用數(shù)字作答)

查看答案和解析>>

同步練習(xí)冊(cè)答案