已知為橢圓,的左右焦點,是坐標原點,過作垂直于軸的直線交橢圓于,設 .
(1)證明: 成等比數(shù)列;
(2)若的坐標為,求橢圓的方程;
(3)在(2)的橢圓中,過的直線與橢圓交于兩點,若,求直線的方程.

(1)詳見解析;(2);(3)

解析試題分析:(1)由條件知M點的坐標為(c,y0),其中|y0|=d,知,d=b•,由此能證明d,b,a成等比數(shù)列;
(2)由條件知c=,d=1,知b2=a?1,a2=b2+2,由此能求出橢圓方程;
(3)設點A(x1,y1)、B(x2,y2),當l⊥x軸時,A(-,-1)、B(-,1),所以≠0. 設直線的方程為y=k(x+),代入橢圓方程得(1+2k2)x2+4k2x+4k2?4=0再由韋達定理能夠推導出直線的方程.
試題解析:(1)證明:由條件知M點的坐標為,其中
, ,即成等比數(shù)列.   3分
(2)由條件知,橢圓方程為 6分
(3)設點A(x1,y1)、B(x2,y2),當l⊥x軸時,A(-,-1)、B(-,1),所以≠0. 設直線的方程為y=k(x+),代入橢圓方程得(1+2k2)x2+4k2x+4k2?4=0所以①由
整理后把①式代入解得k=,
所以直線l的方程為.
考點:數(shù)列與解析幾何的綜合.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

AB分別是直線yxy=-x上的動點,且|AB|=,設O為坐標原點,動點P滿足.
(1)求點P的軌跡方程;
(2)過點(,0)作兩條互相垂直的直線l1,l2,直線l1,l2與點P的軌跡的相交弦分別為CD,EF,設CD,EF的弦中點分別為M,N,求證:直線MN恒過一個定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,已知拋物線方程為y2=4x,其焦點為F,準線為l,A點為拋物線上異于頂點的一個動點,射線HAE垂直于準線l,垂足為H,C點在x軸正半軸上,且四邊形AHFC是平行四邊形,線段AF和AC的延長線分別交拋物線于點B和點D.

(1)證明:∠BAD=∠EAD;
(2)求△ABD面積的最小值,并寫出此時A點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的離心率為,短軸一個端點到右焦點的距離為.
(1)求橢圓的方程;
(2)設不與坐標軸平行的直線與橢圓交于兩點,坐標原點到直線的距離為,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系xOy中,經(jīng)過點(0,)且斜率為k的直線l與橢圓+y2=1有兩個不同的交點P和Q.
(1)求k的取值范圍;
(2)設橢圓與x軸正半軸、y軸正半軸的交點分別為A,B,是否存在常數(shù)k,使得向量共線?如果存在,求k的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C=1(ab>0)的離心率為,一條準線lx=2.
(1)求橢圓C的方程;
(2)設O為坐標原點,Ml上的點,F為橢圓C的右焦點,過點FOM的垂線與以OM為直徑的圓D交于P,Q兩點.
①若PQ,求圓D的方程;
②若Ml上的動點,求證點P在定圓上,并求該定圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C的中心在原點,焦點y在軸上,焦距為,且過點M。
(1)求橢圓C的方程;
(2)若過點的直線l交橢圓C于A、B兩點,且N恰好為AB中點,能否在橢圓C上找到點D,使△ABD的面積最大?若能,求出點D的坐標;若不能,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知橢圓的離心率是,分別是橢圓的左、右兩個頂點,點是橢圓的右焦點。點軸上位于右側(cè)的一點,且滿足

(1)求橢圓的方程以及點的坐標;
(2)過點軸的垂線,再作直線與橢圓有且僅有一個公共點,直線交直線于點.求證:以線段為直徑的圓恒過定點,并求出定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓中心在坐標原點,焦點在x軸上,離心率為,它的一個頂點為拋物線x2=4y的焦點.
(1)求橢圓方程;
(2)若直線yx-1與拋物線相切于點A,求以A為圓心且與拋物線的準線相切的圓的方程;
(3)若斜率為1的直線交橢圓于M、N兩點,求△OMN面積的最大值(O為坐標原點).

查看答案和解析>>

同步練習冊答案