14.下列各組函數(shù)中,f(x)與g(x)是同一函數(shù)的是(  )
A.f(x)=x-1,g(x)=$\frac{{x}^{2}}{x}$-1B.f(x)=x,g(x)=2${\;}^{lo{g}_{2}x}$
C.f(x)=x,g(x)=$\root{3}{{x}^{3}}$D.f(x)=x,g(x)=$\sqrt{{x}^{2}}$

分析 分別判斷兩個(gè)函數(shù)的定義域和對(duì)應(yīng)法則是否一致,否則不是同一函數(shù).

解答 解:A.f(x)的定義域?yàn)镽,而g(x)的定義域?yàn)椋?∞,0)∪(0,+∞),所以定義域不同,所以A不是同一函數(shù).
B.f(x)的定義域?yàn)镽,而g(x)的定義域?yàn)椋?,+∞),所以定義域不同,所以B不是同一函數(shù).
C.g(x)=x,兩個(gè)函數(shù)的定義域和對(duì)應(yīng)法則一致,所以C表示同一函數(shù).
D.f(x)的定義域?yàn)镽,而g(x)=|x|,所以定義域相同,對(duì)應(yīng)法則不相同,所以D不是同一函數(shù).
故選:C.

點(diǎn)評(píng) 本題主要考查判斷兩個(gè)函數(shù)是否為同一函數(shù),判斷的標(biāo)準(zhǔn)就是判斷兩個(gè)函數(shù)的定義域和對(duì)應(yīng)法則是否一致,否則不是同一函數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.經(jīng)濟(jì)學(xué)家在研究供求關(guān)系時(shí),一般用縱軸表示產(chǎn)品價(jià)格(自變量),而用橫軸來(lái)表示產(chǎn)品數(shù)量(因變量).下列供求曲線,哪條表示廠商希望的供應(yīng)曲線,哪條表示客戶希望的需求曲線?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在△ABC中,角A、B、C的對(duì)邊分別是a、b、c,$\frac{asinA+bsinB-csinC}{sinBsinC}$=$\frac{2\sqrt{3}}{3}$a,a=2$\sqrt{3}$,若b∈[1,3],則c的最小值為(  )
A.2B.3C.2$\sqrt{2}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.某產(chǎn)品的廣告費(fèi)用x與銷售額y的統(tǒng)計(jì)數(shù)據(jù)如表:
廣告費(fèi)x(萬(wàn)元)2345
利潤(rùn)y(萬(wàn)元)264956
根據(jù)表格已得回歸方程為$\widehat{y}$=9.4x+9.1,表中有一數(shù)據(jù)模糊不清,請(qǐng)推算該數(shù)據(jù)的值為37.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知變量x,y滿足約束條件$\left\{\begin{array}{l}x+2y≥2\\ 2x+y≤4\\ y≤2\end{array}\right.$則目標(biāo)函數(shù)z=3x-y的最大值(  )
A.6B.$\frac{3}{2}$C.-1D.$-\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若$\frac{2a-c}$=$\frac{cosC}{cosB}$,b=4,則a+c的最大值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.直線l過點(diǎn)(0,2),被圓C:x2+y2-4x-6y+9=0截得的弦長(zhǎng)為2$\sqrt{3}$,則直線l的方程是( 。
A.y=$\frac{4}{3}$x+2B.y=-$\frac{1}{3}$x+2C.y=2D.y=$\frac{4}{3}$x+2或y=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知直線l:x+y=1與y軸交于點(diǎn)P,圓O的方程為x2+y2=r2(r>0).
(Ⅰ)如果直線l與圓O相切,那么r=$\frac{\sqrt{2}}{2}$;(將結(jié)果直接填寫在答題卡的相應(yīng)位置上)
(Ⅱ)如果直線l與圓O交于A,B兩點(diǎn),且$\frac{|PA|}{|PB|}=\frac{1}{2}$,求r的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.M為何值時(shí),直線2x-y+m=0與圓x2+y2=5
(1)無(wú)公共點(diǎn);
(2)截得弦長(zhǎng)為2.

查看答案和解析>>

同步練習(xí)冊(cè)答案