已知不垂直于x軸的動直線l交拋物線y2=2mx(m>0)于A、B兩點,若A、B兩點滿足∠AQP=∠BQP,其中Q(-4,0),原點O為PQ的中點.
①求證:A、P、B三點共線;
②當m=2時,是否存在垂直于x軸的直線l′,使得l′被以AP為直徑的圓所截得的弦長為定值,如果存在,求出l′的方程,如果不存在,請說明理由.

【答案】分析:①先根據(jù)∵∠AQP=∠BQP且顯然是銳角得到tan∠AQP=tan∠BQP.即KAQ=-kBQ,從而得到點A,B之間的關系,再求出直線AP與PB的斜率即可證明結論;
②設出直線方程以及點A的坐標和以AP為直徑的圓心C圓心坐標;再求出對應弦長,即可求出結論.
解答:解:①證明:由題意可設A(,y1):B(,y2),P(4,0).
∵∠AQP=∠BQP且顯然是銳角
∴tan∠AQP=tan∠BQP.即KAQ=-kBQ,
⇒y1y2(y1+y2)=-8m(y1+y2).
∵L不垂直于x軸,
∴y1+y2≠0,y1y2=-8m.
∴kAP===
∵kBP==kAP
∴A,P,B三點共線.
②假設滿足題意l的存在,設l:x=n,A(x1,y1),則y12=4x1,
∴以AP為直徑的圓心C(),
則l被圓C截得的弦長=2=2
當n=3時,弦長為定值2
故存在滿足題意的直線l:x=3.
點評:本題主要考查直線與圓錐曲線的綜合問題.直線與圓錐曲線聯(lián)系在一起的綜合題在高考中多以高檔題、壓軸題出現(xiàn),主要涉及位置關系的判定,弦長問題、最值問題、對稱問題、軌跡問題等   突出考查了數(shù)形結合、分類討論、函數(shù)與方程、等價轉化等數(shù)學思想方法,要求考生分析問題和解決問題的能力、計算能力較高
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知不垂直于x軸的動直線l交拋物線y2=2mx(m>0)于A、B兩點,若A、B兩點滿足∠AQP=∠BQP,其中Q(-4,0),原點O為PQ的中點.
①求證:A、P、B三點共線;
②當m=2時,是否存在垂直于x軸的直線l′,使得l′被以AP為直徑的圓所截得的弦長為定值,如果存在,求出l′的方程,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年四川省南充市高三第二次診斷性考試理科數(shù)學卷 題型:解答題

已知不垂直于x軸的動直線l交拋物線于A、B兩點,若A,B兩點滿足AQP=BQP,其中Q(-4,0),原點O為PQ的中點.

①求證A,P,B三點共線;

②當m=2時,是否存在垂直于-軸的直線,使得被以為直徑的圓所截得的弦長為定值,如果存在,求出的方程,如果不存在,請說明理由

 

查看答案和解析>>

科目:高中數(shù)學 來源:2004-2005學年重慶一中高二(上)期末數(shù)學試卷(文科)(解析版) 題型:解答題

已知不垂直于x軸的動直線l交拋物線y2=2mx(m>0)于A、B兩點,若A、B兩點滿足∠AQP=∠BQP,其中Q(-4,0),原點O為PQ的中點.
①求證:A、P、B三點共線;
②當m=2時,是否存在垂直于x軸的直線l′,使得l′被以AP為直徑的圓所截得的弦長為定值,如果存在,求出l′的方程,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年湖北省黃岡市高二(上)12月月考數(shù)學試卷(解析版) 題型:解答題

已知不垂直于x軸的動直線l交拋物線y2=2mx(m>0)于A、B兩點,若A、B兩點滿足∠AQP=∠BQP,其中Q(-4,0),原點O為PQ的中點.
①求證:A、P、B三點共線;
②當m=2時,是否存在垂直于x軸的直線l′,使得l′被以AP為直徑的圓所截得的弦長為定值,如果存在,求出l′的方程,如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案