分析 由已知寫出數(shù)列的通項公式,然后利用裂項相消法求數(shù)列的前n項和.
解答 解:∵an=$|\begin{array}{l}{\frac{1}{n}}&{\frac{1}{2}}\\{2}&{\frac{1}{n+1}}\end{array}|$=$\frac{1}{n(n+1)}-1$=$\frac{1}{n}-\frac{1}{n+1}-1$,
∴${S}_{n}=(1-\frac{1}{2}-1)+(\frac{1}{2}-\frac{1}{3}-1)+…+(\frac{1}{n}-\frac{1}{n+1}-1)$
=$(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n}-\frac{1}{n+1})-n$=$1-\frac{1}{n+1}-n=\frac{n+1-1-{n}^{2}-n}{n+1}=-\frac{{n}^{2}}{n+1}$.
故答案為:$-\frac{{n}^{2}}{n+1}$.
點評 本題考查利用裂項相消法求數(shù)列的前n項和,是中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{9}{10}$-$\frac{3}{10}$i | B. | $\frac{1}{10}$+$\frac{3}{10}$i | C. | $\frac{9}{10}$+$\frac{3}{10}$i | D. | $\frac{1}{10}$-$\frac{3}{10}$i |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 448 | B. | 528 | C. | 548 | D. | 608 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | -4 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com