精英家教網 > 高中數學 > 題目詳情
某超市為促銷商品,特舉辦“購物有獎100%中獎”活動.凡消費者在該超市購物滿10元,享受一次搖獎機會,購物滿20元,享受兩次搖獎機會,以此類推.搖獎機的結構如圖所示,將一個半徑適當的小球放入如圖所示的容器最上方的入口處,小球將自由下落、小球在下落的過程中,將3次遇到黑色障礙物,最后落入A袋或B袋中,落入A袋為一等獎,獎金為2元,落入B袋為二等獎,獎金為1元、已知小球每次遇到黑色障礙物時,向左、右兩邊下落的概率都是
(Ⅰ)求搖獎兩次,均獲得一等獎的概率;
(Ⅱ)某消費者購物滿20元,搖獎后所得獎金為X元,試求X的分布列與期望;
(Ⅲ)若超市同時舉行購物八八折讓利于消費者活動(打折后不再享受搖獎),某消費者剛好消費20元,請問他是選擇搖獎還是選擇打折比較劃算.

【答案】分析:本題考查的知識點是相互獨立事件的概率乘法公式,離散型隨機變量及其分布列與數學期望,
(1)記“小球落入A袋中”為事件A,“小球落入B袋中”為事件B,則易得P(A)=,P(B)=,則獲得兩次一等獎的概率P=P(A)•P(A),代入即可得到答案.
(2)消費者購物滿20元,搖獎后所得獎金為X元,X可以取2,3,4,分類討論并計算出P(X=2),P(X=3),P(X=4)的值后,即可得到隨機變量X的分布列,進而求出數學期望.
(3)我們可以分別計算,剛好消費20元時,八八折能節(jié)省的錢數,及抽獎能節(jié)省的錢數,比較后即可得到答案.
解答:解:記“小球落入A袋中”為事件A,“小球落入B袋中”為事件B,則小球落入A袋中當且僅當小球一直向左落下或一直向右落下,故(2分)
(I)獲得兩次一等獎的概率為.(4分)
(II)X可以取2,3,4
P(X=2)=
P(X=3)=,
P(X=4)=(8分)
分布列為:

所以E(X)=2×+3×+4×=2.5.(10分)
(Ⅲ)參加搖獎,可節(jié)省2.5元,打折優(yōu)惠,可節(jié)省2.4元,當然參加搖獎.(12分)
點評:本小題主要考查相互獨立事件概率的計算,運用數學知識解決問題的能力,要想計算一個事件的概率,首先我們要分析這個事件是分類的(分幾類)還是分步的(分幾步),然后再利用加法原理和乘法原理進行求解.對于概率要多練習使用列舉法表示滿足條件的基本事件個數.對于數學期望的計算則要熟練掌握運算方法和步驟.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網某超市為促銷商品,特舉辦“購物有獎100%中獎”活動.凡消費者在該超市購物滿10元,享受一次搖獎機會,購物滿20元,享受兩次搖獎機會,以此類推.搖獎機的結構如圖所示,將一個半徑適當的小球放入如圖所示的容器最上方的入口處,小球將自由下落、小球在下落的過程中,將3次遇到黑色障礙物,最后落入A袋或B袋中,落入A袋為一等獎,獎金為2元,落入B袋為二等獎,獎金為1元、已知小球每次遇到黑色障礙物時,向左、右兩邊下落的概率都是
12

(Ⅰ)求搖獎兩次,均獲得一等獎的概率;
(Ⅱ)某消費者購物滿20元,搖獎后所得獎金為X元,試求X的分布列與期望;
(Ⅲ)若超市同時舉行購物八八折讓利于消費者活動(打折后不再享受搖獎),某消費者剛好消費20元,請問他是選擇搖獎還是選擇打折比較劃算.

查看答案和解析>>

科目:高中數學 來源:0112 模擬題 題型:解答題

某超市為促銷商品,特舉辦“購物有獎100%中獎”活動,凡消費者在該超市購物滿100元,享受一次搖獎機會,購物滿200元,享受兩次搖獎機會,以此類推.搖獎機的結構如圖所示,將一個半徑適當的小球放入如圖所示的容器最上方的入口處,小球將自由下落。小球在下落的過程中,將3次遇到黑色障礙物,最后落入A袋或B袋中,落入A袋為一等獎,獎金為20元,落入B袋為二等獎,獎金為10元,已知小球每次遇到黑色障礙物時,向左、右兩邊下落的概率都是。
(Ⅰ)求:搖獎兩次,均獲得一等獎的概率;
(Ⅱ)某消費者購物滿200元,搖獎后所得獎金為X元,試求X的分布列與期望;
(Ⅲ)若超市同時舉行購物八八折讓利于消費者活動(打折后不再享受搖獎),某消費者剛好消費200元,請問他是選擇搖獎還是選擇打折比較劃算。

查看答案和解析>>

科目:高中數學 來源:2011年河南省開封市高考數學一模試卷(理科)(解析版) 題型:解答題

某超市為促銷商品,特舉辦“購物有獎100%中獎”活動.凡消費者在該超市購物滿10元,享受一次搖獎機會,購物滿20元,享受兩次搖獎機會,以此類推.搖獎機的結構如圖所示,將一個半徑適當的小球放入如圖所示的容器最上方的入口處,小球將自由下落、小球在下落的過程中,將3次遇到黑色障礙物,最后落入A袋或B袋中,落入A袋為一等獎,獎金為2元,落入B袋為二等獎,獎金為1元、已知小球每次遇到黑色障礙物時,向左、右兩邊下落的概率都是
(Ⅰ)求搖獎兩次,均獲得一等獎的概率;
(Ⅱ)某消費者購物滿20元,搖獎后所得獎金為X元,試求X的分布列與期望;
(Ⅲ)若超市同時舉行購物八八折讓利于消費者活動(打折后不再享受搖獎),某消費者剛好消費20元,請問他是選擇搖獎還是選擇打折比較劃算.

查看答案和解析>>

科目:高中數學 來源:2010年新課標省市高考數學模擬題分類優(yōu)化重組綜合測試卷(解析版) 題型:解答題

某超市為促銷商品,特舉辦“購物有獎100%中獎”活動.凡消費者在該超市購物滿10元,享受一次搖獎機會,購物滿20元,享受兩次搖獎機會,以此類推.搖獎機的結構如圖所示,將一個半徑適當的小球放入如圖所示的容器最上方的入口處,小球將自由下落、小球在下落的過程中,將3次遇到黑色障礙物,最后落入A袋或B袋中,落入A袋為一等獎,獎金為2元,落入B袋為二等獎,獎金為1元、已知小球每次遇到黑色障礙物時,向左、右兩邊下落的概率都是
(Ⅰ)求搖獎兩次,均獲得一等獎的概率;
(Ⅱ)某消費者購物滿20元,搖獎后所得獎金為X元,試求X的分布列與期望;
(Ⅲ)若超市同時舉行購物八八折讓利于消費者活動(打折后不再享受搖獎),某消費者剛好消費20元,請問他是選擇搖獎還是選擇打折比較劃算.

查看答案和解析>>

同步練習冊答案