已知橢圓的右焦點為F,上頂點為A,P為C上任一點,MN是圓的一條直徑,若與AF平行且在y軸上的截距為的直線恰好與圓相切.
(Ⅰ)已知橢圓的離心率;
(Ⅱ)若的最大值為49,求橢圓C的方程.
(Ⅰ) (Ⅱ)
(I)先求出直線l的方程為,然后根據(jù)因為直線與圓相切,得到,從而可得到a,c的關系,進而求出e.
(II) 在(I)的基礎上,可把橢圓方程轉化為,這樣根據(jù)條件建立關于c的方程即可求出橢圓方程,因而設、圓的圓心記為,則,根據(jù)其最大值為49,可求出c的值.
(Ⅰ)由題意可知直線l的方程為,
因為直線與圓相切,所以,即
從而                                 …………………5分
(Ⅱ)設、圓的圓心記為,則
﹥0),又=
 . …………………8分
j當
;
k當
故舍去.
綜上所述,橢圓的方程為.                …………………12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖所示,水平地面上有一個大球,現(xiàn)作如下方法測量球的大小:用一個銳角為600的三角板,斜邊緊靠球面,一條直角邊緊靠地面,并使三角板與地面垂直,P為三角板與球的切點,如果測得PA=5,則球的表面積為____________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

直線與圓相切,則的值為 (     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分15分)
設有半徑為3的圓形村落,、兩人同時從村落中心出發(fā)。一直向北直行;先向東直行,出村后一段時間,改變前進方向,沿著與村落邊界相切的直線朝所在的方向前進。
(1)若在距離中心5的地方改變方向,建立適當坐標系,
求:改變方向后前進路徑所在直線的方程
(2)設兩人速度一定,其速度比為,且后來恰與相遇.問兩人在何處相遇?
(以村落中心為參照,說明方位和距離)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

備用如圖;在直角梯形ABCD中, ,動點P在以點C為圓心且與直線BD相切的圓上運動,設,則的取值范圍是              

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓,斜率的直線與橢圓相交于點,點是線段的中點,直線為坐標原點)的斜率是,那么           

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓2x2+y2=1上的點到直線y=x-4的距離的最小值是        

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

曲線y=1+ (|x|≤2)與直線y=k(x-2)+4有兩個交點時,實數(shù)k的取值范圍是(  )      
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

過點A(-2,0)的直線交圓x2+y2=1交于P、Q兩點,則·的值為______.

查看答案和解析>>

同步練習冊答案