經(jīng)過雙曲線數(shù)學公式的左焦點F1作傾斜角為數(shù)學公式的弦AB.
求:(1)線段AB的長; 
(2)設F2為右焦點,求△F2AB的面積.

解:(1)雙曲線的左焦點為F1(-2,0),
設A(x1,y1),B(x2,y2),則直線
代入3x2-y2-3=0整理得8x2-4x-13=0
∴x1+x2=,x1x2=-
∴|x1-x2|=
由距離公式|x1-x2|=3(6分)
(2)F2(2,0),由點到直線的距離公式可得:點F到直線AB的距離d=2
∴△F2AB的面積為×3×2=3(6分)
分析:(1)雙曲線的左焦點為F1(-2,0),確定直線AB的方程,代入3x2-y2-3=0,利用韋達定理,即可得到線段AB的長;
(2)求出點F到直線AB的距離,即可得到△F2AB的面積.
點評:本題考查直線與雙曲線的位置關系,考查弦長公式的運用,考查三角形的面積,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線E:
x2
24
-
y2
12
=1
的左焦點為F,左準線l與x軸的交點是圓C的圓心,圓C恰好經(jīng)過坐標原點O,設G是圓C上任意一點.
(Ⅰ)求圓C的方程;
(Ⅱ)若直線FG與直線l交于點T,且G為線段FT的中點,求直線FG被圓C所截得的弦長;
(Ⅲ)在平面上是否存在定點P,使得對圓C上任意的點G有
|GF|
|GP|
=
1
2
?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△OFQ的面積為2
6
,且
OF
FQ
=m

(1)設
6
<m<4
6
,求向量
OF
FQ
的夾角θ
正切值的取值范圍;
(2)設以O為中心,F(xiàn)為焦點的雙曲線經(jīng)過點Q(如圖),|
OF
|=c,m=(
6
4
-1)c2
,當|
OQ
|
取得最小值時,求此雙曲線的方程.
(3)設F1為(2)中所求雙曲線的左焦點,若A、B分別為此雙曲線漸近線l1、l2上的動點,且2|AB|=5|F1F|,求線段AB的中點M的軌跡方程,并說明軌跡是什么曲線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•上海模擬)已知雙曲線
x2
a2
-
y2
b2
=1
的漸近線方程為y=±
3
3
x
,左焦點為F,過A(a,0),B(0,-b)的直線為l,原點到直線l的距離是
3
2

(1)求雙曲線的方程;
(2)已知直線y=x+m交雙曲線于不同的兩點C,D,問是否存在實數(shù)m,使得以CD為直徑的圓經(jīng)過雙曲線的左焦點F.若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆黑龍江哈爾濱第十二中學高二上期末考試理科數(shù)學卷(解析版) 題型:解答題

已知雙曲線的漸近線方程為,左焦點為F,過的直線為,原點到直線的距離是

(1)求雙曲線的方程;

(2)已知直線交雙曲線于不同的兩點C,D,問是否存在實數(shù),使得以CD為直徑的圓經(jīng)過雙曲線的左焦點F。若存在,求出m的值;若不存在,請說明理由。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2008-2009學年上海市八校高三(下)第二次聯(lián)考數(shù)學試卷(理科)(解析版) 題型:解答題

已知雙曲線的漸近線方程為,左焦點為F,過A(a,0),B(0,-b)的直線為l,原點到直線l的距離是
(1)求雙曲線的方程;
(2)已知直線y=x+m交雙曲線于不同的兩點C,D,問是否存在實數(shù)m,使得以CD為直徑的圓經(jīng)過雙曲線的左焦點F.若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案