【題目】已知三棱錐M-ABC中,MA=MB=MC=AC=,AB=BC=2OAC的中點(diǎn),點(diǎn)N在邊BC上,且.

1)證明:BO平面AMC

2)求二面角N-AM-C的正弦值.

【答案】(1)證明見解析;(2)

【解析】

1)先證明,即可證明BO平面AMC

(2)因?yàn)?/span>兩兩垂直,建立空間直角坐標(biāo)系如圖所示.求出平面與平面的法向量,代入公式即可得到結(jié)果.

1)如圖所示:連接

中:,則,.

中:,的中點(diǎn),則,且

中:,滿足:

根據(jù)勾股定理逆定理得到 相交于,

平面.

(2)因?yàn)?/span>兩兩垂直,建立空間直角坐標(biāo)系如圖所示.因?yàn)?/span>,,

,

所以,,

設(shè)平面的法向量為,則

,得,

因?yàn)?/span>平面,所以為平面的法向量,

所以所成角的余弦為

所以二面角的正弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了打好脫貧攻堅(jiān)戰(zhàn),某貧困縣農(nóng)科院針對玉米種植情況進(jìn)行調(diào)研,力爭有效地改良玉米品種,為農(nóng)民提供技術(shù)支援.現(xiàn)對已選出的一組玉米的莖高進(jìn)行統(tǒng)計(jì),獲得數(shù)據(jù)如下表(單位:厘米),設(shè)莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

K

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中

抗倒伏數(shù)據(jù)如下:

143 147 147 151 153 153 157 159 160 164 166 169 174 175 175

180 188 188 192 195 195 199 203 206 206

易倒伏數(shù)據(jù)如下:

151 167 175 178 181 182 186 186 187 190 190 193 194 195 198

199 199 202 202 203

1)完成 2×2 列聯(lián)表,并說明能否在犯錯(cuò)概率不超過0.01的條件下認(rèn)為抗倒伏是否與玉米矮莖有關(guān)?

2)(i)按照分層抽樣的方式,在上述樣本中,從易倒伏和抗倒伏兩組中抽出9株玉米,再從這9株中取出兩株進(jìn)行雜交試驗(yàn),設(shè)取出的易倒伏玉米株數(shù)為X,求X的分布列(概率用組合數(shù)算式表示);

ii)若將頻率視為概率,從抗倒伏的玉米試驗(yàn)田中再隨機(jī)取出50株,求取出的高莖玉米株數(shù)的數(shù)學(xué)期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為固定的整數(shù),定義任意整數(shù)坐標(biāo)點(diǎn)關(guān)于的余數(shù)是關(guān)于的余數(shù).找出所有正整數(shù)數(shù)組,使得以、為頂點(diǎn)的長方形具有如下性質(zhì):

.長方形內(nèi)整數(shù)點(diǎn)以為余數(shù)出現(xiàn)的次數(shù)相同;

.長方形邊界上整數(shù)點(diǎn)以為余數(shù)出現(xiàn)的次數(shù)相同.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,底面是菱形,,.

(Ⅰ)求證:;

(Ⅱ)若平面平面,求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)正方形花圃被分成5份.

1)若給這5個(gè)部分種植花,要求相鄰兩部分種植不同顏色的花,己知現(xiàn)有紅、黃、藍(lán)、綠4種顏色不同的花,求有多少種不同的種植方法?

2)若將6個(gè)不同的盆栽都擺放入這5個(gè)部分,且要求每個(gè)部分至少有一個(gè)盆栽,問有多少種不同的放法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】齊王有上等,中等,下等馬各一匹;田忌也有上等,中等,下等馬各一匹.田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬;田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬;田忌的下等馬劣于齊王的下等馬.現(xiàn)從雙方的馬匹中隨機(jī)各選一匹進(jìn)行一場比賽,若有優(yōu)勢的馬一定獲勝,則齊王的馬獲勝的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列判斷正確的是(

A.若隨機(jī)變量服從正態(tài)分布,,則;

B.已知直線平面,直線平面,則的必要不充分條件;

C.若隨機(jī)變量服從二項(xiàng)分布:,則;

D.已知直線經(jīng)過點(diǎn),則的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在2018年俄羅斯世界杯期間,莫斯科的部分餐廳經(jīng)營了來自中國的小龍蝦,這些小龍蝦標(biāo)有等級代碼.為得到小龍蝦等級代碼數(shù)值與銷售單價(jià)之間的關(guān)系,經(jīng)統(tǒng)計(jì)得到如下數(shù)據(jù):

等級代碼數(shù)值

38

48

58

68

78

88

銷售單價(jià)(元

16.8

18.8

20.8

22.8

24

25.8

(1)已知銷售單價(jià)與等級代碼數(shù)值之間存在線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程(系數(shù)精確到0.1);

(2)若莫斯科某餐廳銷售的中國小龍蝦的等級代碼數(shù)值為98,請估計(jì)該等級的中國小龍蝦銷售單價(jià)為多少元?

參考公式:對一組數(shù)據(jù),,····,其回歸直線的斜率和截距最小二乘估計(jì)分別為:,.

參考數(shù)據(jù):,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種植物感染病毒極易導(dǎo)致死亡,某生物研究所為此推出了一種抗病毒的制劑,現(xiàn)對20株感染了病毒的該植株樣本進(jìn)行噴霧試驗(yàn)測試藥效.測試結(jié)果分植株死亡植株存活兩個(gè)結(jié)果進(jìn)行統(tǒng)計(jì);并對植株吸收制劑的量(單位:mg)進(jìn)行統(tǒng)計(jì).規(guī)定:植株吸收在6mg(包括6mg)以上為足量,否則為不足量”.現(xiàn)對該20株植株樣本進(jìn)行統(tǒng)計(jì),其中植株存活13株,對制劑吸收量統(tǒng)計(jì)得下表.已知植株存活制劑吸收不足量的植株共1.

編號(hào)

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

吸收量(mg)

6

8

3

8

9

5

6

6

2

7

7

5

10

6

7

8

8

4

6

9

1)完成以下列聯(lián)表,并判斷是否可以在犯錯(cuò)誤概率不超過1%的前提下,認(rèn)為植株的存活制劑吸收足量有關(guān)?

吸收足量

吸收不足量

合計(jì)

植株存活

1

植株死亡

合計(jì)

20

2)①若在該樣本吸收不足量的植株中隨機(jī)抽取3株,記植株死亡的數(shù)量,求得分布列和期望;

②將頻率視為概率,現(xiàn)在對已知某塊種植了1000株并感染了病毒的該植物試驗(yàn)田里進(jìn)行該藥品噴霧試驗(yàn),設(shè)植株存活吸收足量的數(shù)量為隨機(jī)變量,求.

參考數(shù)據(jù):,其中

查看答案和解析>>

同步練習(xí)冊答案