(08年龍巖一中模擬)(12分)已知、是雙曲線的左、右焦點,點是曲線上任意一點,且.

(I)求曲線的方程;

(II)過作一直線交曲線、兩點,若,求面積最大時直線的方程.

 

 解析:(I)雙曲線的左、右焦點分別是

得曲線是以、為焦點、長軸長為4的橢圓。

曲線的方程                               ………………………… 4分

(II)由可知點是線段的中點,設(shè)其坐標(biāo)為 

①若直線的斜率不存在,則直線的方程是,此時,點重合.不能構(gòu)成三角形.

②若直線的斜率存在,設(shè)為,則直線的方程是          

聯(lián)立方程組得    

將(1)代入(2),整理得:      …………………………6分

設(shè),由韋達定理可得

                              …………………………  8分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年龍巖一中模擬)(12分)

如圖,三棱錐P―ABC中, PC平面ABC,PC=AC=2,AB=BC,D是PB上一點,且CD平面PAB.

(Ⅰ) 求證:AB平面PCB;

(Ⅱ)求異面直線AP與BC所成角的大。                                     

(Ⅲ)求二面角C-PA-B的大小的余弦值.         

                                                                                                                                                               

                                                                          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年龍巖一中模擬文)(12分)

設(shè)a、b、c分別是先后三次拋擲一枚骰子得到的點數(shù)。

(Ⅰ)求a+b+c為奇數(shù)的概率

(Ⅱ)設(shè)有關(guān)于的一元二次方程,求上述方程有兩個不相等實根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年龍巖一中模擬理)(14分)

已知函數(shù),

(1)證明:當(dāng)時,上是增函數(shù);

(2)對于給定的閉區(qū)間,試說明存在實數(shù) ,當(dāng)時,在閉區(qū)間上是減函數(shù);

(3)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年龍巖一中模擬文)(12分)

設(shè)數(shù)列的前n項和為,已知

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)設(shè)

并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年龍巖一中模擬)(12分)

盒內(nèi)有大小相同的9個球,其中2個紅色球,3個白色球,4個黑色球. 規(guī)定取出1個紅色球得1分,取出1個白色球得0分,取出1個黑色球得分. 現(xiàn)從盒內(nèi)一次性取3個球.

(Ⅰ)求取出的3個球得分之和恰為1分的概率;

(Ⅱ)設(shè)為取出的3個球中白色球的個數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案