若將拋物線y=x2+2x-1按向量
a
=(h,k)平移后得到拋物線的解析式為y=x2,試求
a
分析:先寫出平移公式,將它代入y′=x′2,整理與=x2+2x-1是同一函數(shù),比較系數(shù),可得結(jié)論.
解答:解:設(shè)P(x,y)是拋物線y=x2+2x-1上任意一點(diǎn),平移后拋物線y=x2上的對(duì)應(yīng)點(diǎn)為P′(x′,y′),
由平移公式,得
x′=x+h
y′=y+k

將它代入y′=x′2,得y+k=(x+h)2
整理得y=x2+2hx+h2-k.
因?yàn)樗鼞?yīng)與y=x2+2x-1是同一函數(shù),比較系數(shù)得h=1,k=2,
所以
a
=(1,2).
點(diǎn)評(píng):本題考查向量的平移,考查學(xué)生分析解決問題的能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下面有4個(gè)命題:
①當(dāng)(1+4k2)x2+8kmx+4m2-4=0時(shí),2x+
1
2x
的最小值為2;
②若雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的一條漸近線方程為y=
3
x
,且其一個(gè)焦點(diǎn)與拋物線y2=8x的焦點(diǎn)重合,則雙曲線的離心率為2;
③將函數(shù)y=cos2x的圖象向右平移
π
6
個(gè)單位,可以得到函數(shù)y=sin(2x-
π
6
)
的圖象;
其中 錯(cuò)誤命題的序號(hào)為
 
(把你認(rèn)為錯(cuò)誤命題的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)下列四個(gè)命題中,真命題的序號(hào)有
 
(寫出所有真命題的序號(hào)).
①將函數(shù)y=|x+1|的圖象按向量y=(-1,0)平移,得到的圖象對(duì)應(yīng)的函數(shù)表達(dá)式為y=|x|.
②圓x2+y2+4x-2y+1=0與直線y=
1
2
x
相交,所得弦長為2.
③若sin(α+β)=
1
2
,sin(α-β)=
1
3
,則tanαcotβ=5.
④如圖,已知正方體ABCD-A1B1C1D1,P為底面ABCD內(nèi)一動(dòng)點(diǎn),P到平面AA1D1D的距離與到直線CC1的距離相等,則P點(diǎn)的軌跡是拋物線的一部分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•濟(jì)南三模)下面給出的四個(gè)命題中:
①以拋物線y2=4x的焦點(diǎn)為圓心,且過坐標(biāo)原點(diǎn)的圓的方程為(x-1)2+y2=1;
②若m=-2,則直線(m+2)x+my+1=0與直線(m-2)x+(m+2)y-3=0相互垂直;
③命題“?x∈R,使得x2+3x+4=0”的否定是“?x∈R,都有x2+3x+4≠0”;
④將函數(shù)y=sin2x的圖象向右平移
π
3
個(gè)單位,得到函數(shù)y=sin(2x-
π
6
)的圖象.
其中是真命題的有
①②③
①②③
(將你認(rèn)為正確的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個(gè)命題中,真命題的序號(hào)有___________(寫出所有真命題的序號(hào)).

①將函數(shù)y=|x+1|的圖象按向量v=(-1,0)平移,得到的圖象對(duì)應(yīng)的函數(shù)表達(dá)式為y=|x|

②圓x2+y2+4x+2y+1=0與直線y=x相交,所得弦長為2

③若sin(α+β)=,sin(α-β)=,則tanαcotβ=5

④如圖,已知正方體ABCD—A1B1C1D1,P為底面ABCD內(nèi)一動(dòng)點(diǎn),P到平面AA1D1D的距離與到直線CC1的距離相等,則P點(diǎn)的軌跡是拋物線的一部分

查看答案和解析>>

同步練習(xí)冊(cè)答案