【題目】某電視傳媒公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,如圖是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖,將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為體育迷.若抽取100人中有女性55人,其中女體育迷有10人,完成答題卡中的列聯(lián)表并判斷能否在犯錯誤概率不超過0.05的前提下認(rèn)為體育迷與性別有關(guān)系?

非體育迷

體育迷

合計(jì)

10

55

合計(jì)

附表及公式:,.

0.10

0.05

0.01

2.706

3.841

6.635

【答案】表格見解析;不能

【解析】

先根據(jù)頻率分布直方圖求體育迷觀眾人數(shù),進(jìn)而得到男體育迷人數(shù)、男非體育迷人數(shù)、女非體育迷人數(shù)、填入表格;再根據(jù)卡方公式求卡方,對照數(shù)據(jù)作出判斷.

由直方圖可知,100名觀眾中體育迷觀眾有名,

所以男體育迷有,男非體育迷有.

所以列聯(lián)表如下:

非體育迷

體育迷

合計(jì)

合計(jì)

.

故不能在犯錯概率不超過0.05的前提下認(rèn)為體育迷與性別有關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:若兩個橢圓的離心率相等,則稱兩個橢圓是相似的.如圖,橢圓與橢圓是相似的兩個橢圓,并且相交于上下兩個頂點(diǎn),橢圓的長軸長是4,橢圓長軸長是2,點(diǎn)分別是橢圓的左焦點(diǎn)與右焦點(diǎn).

1)求橢圓,的方程;

2)過的直線交橢圓于點(diǎn),,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知分別是雙曲線E 的左、右焦點(diǎn),P是雙曲線上一點(diǎn), 到左頂點(diǎn)的距離等于它到漸近線距離的2倍,(1)求雙曲線的漸近線方程;(2)當(dāng)時, 的面積為,求此雙曲線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,是長軸的一個端點(diǎn),弦過橢圓的中心,點(diǎn)在第一象限,且,

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)、為橢圓上不重合的兩點(diǎn)且異于,若的平分線總是垂直于軸,問是否存在實(shí)數(shù),使得?若不存在,請說明理由;若存在,求取得最大值時的的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng),求函數(shù)的單調(diào)遞增區(qū)間;

(2)在區(qū)間內(nèi)至少存在一個實(shí)數(shù),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,直線與拋物線交于兩點(diǎn),是坐標(biāo)原點(diǎn).

(1)若直線過點(diǎn),求直線的方程;

(2)已知點(diǎn),若直線不與坐標(biāo)軸垂直,且,證明:直線過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C a>b>0),四點(diǎn)P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三點(diǎn)在橢圓C上.

(1)求C的方程;

(2)設(shè)直線l不經(jīng)過P2點(diǎn)且與C相交于A,B兩點(diǎn).若直線P2A與直線P2B的斜率的和為–1,證明:l過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省確定從2021年開始,高考采用“”的模式,取消文理分科,即“3”包括語文、數(shù)學(xué)、英語,為必考科目:“1”表示從物理、歷史中任選一門;“2”則是從生物、化學(xué)、地理、政治中選擇兩門,共計(jì)六門考試科目.某高中從高一年級2000名學(xué)生(其中女生900人)中,采用分層抽樣的方法抽取名學(xué)生進(jìn)行調(diào)查.

(1)已知抽取的名學(xué)生中含男生110人,求的值及抽取到的女生人數(shù);

(2)學(xué)校計(jì)劃在高二上學(xué)期開設(shè)選修中的“物理”和“歷史”兩個科目,為了了解學(xué)生對這兩個科目的選課情況,對在(1)的條件下抽取到的名學(xué)生講行問卷調(diào)查(假定每名學(xué)生在這兩個科目中必須選擇一個科目且只能選擇一個科目).下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表,請將列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為選擇科目與性別有關(guān)?說明你的理由;

性別

選擇物理

選擇歷史

總計(jì)

男生

50

女生

30

總計(jì)

(3)在(2)的條件下,從抽取的選擇“物理”的學(xué)生中按分層抽樣抽取6人,再從這6名學(xué)生中抽取2人,對“物理”的選課意向作深入了解,求2人中至少有1名女生的概率.

參考公式:,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,過點(diǎn)的動直線交拋物線于,兩點(diǎn)

(1)當(dāng)恰為的中點(diǎn)時,求直線的方程;

(2)拋物線上是否存在一個定點(diǎn),使得以弦為直徑的圓恒過點(diǎn)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由

查看答案和解析>>

同步練習(xí)冊答案