已知f(x)是定義在[a,b]上的函數(shù),其圖象是一條連續(xù)的曲線,且滿足下列條件:
①f(x)的值域為G,且G⊆[a,b];
②對任意的x,y∈[a,b],都有|f(x)-f(y)|<|x-y|.
那么,關于x的方程f(x)=x在區(qū)間[a,b]上根的情況是( )
A.沒有實數(shù)根
B.有且僅有一個實數(shù)根
C.恰有兩個實數(shù)根
D.有無數(shù)個不同的實數(shù)根
【答案】分析:由題意設g(x)=f(x)-x,已知區(qū)間[a,b]判斷兩個端點與0的關系,根據(jù)根的存在定理進行求解.
解答:解:設g(x)=f(x)-x.
g(a)=f(a)-a≥0,
g(b)=f(b)-b≤0,
所以g(x)=0在[a,b]有實數(shù)根,
若有兩個不同的實數(shù)根x,y,
則f(x)=x,f(y)=y,得f(x)-f(y)=x-y,
這與已知條件|f(x)-f(y)|<|x-y|相矛盾.
故選B.
點評:此題考查根的存在性及根的個數(shù)判斷,比較簡單是一道基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)是定義在(-4,4)上的奇函數(shù),它在定義域內(nèi)單調(diào)遞減 若a滿足f(1-a)+f(2a-3)小于0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若a,b∈[-1,1],a+b≠0時,都有
f(a)+f(b)
a+b
>0

(1)證明函數(shù)a=1在f(x)=-x2+x+lnx上是增函數(shù);
(2)解不等式:f(
1
x-1
)>0,x∈(0,+∞);
(3)若f′(x)=-2x+1+
1
x
=-
2x2-x-1
x
對所有f'(x)=0,任意x=-
1
2
恒成立,求實數(shù)x=1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

8、已知f(x)是定義在R上的函數(shù),f(1)=1,且對任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,則g(2009)=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是定義在實數(shù)集R上的增函數(shù),且f(1)=0,函數(shù)g(x)在(-∞,1]上為增函數(shù),在[1,+∞)上為減函數(shù),且g(4)=g(0)=0,則集合{x|f(x)g(x)≥0}=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是定義在(-∞,+∞)上的偶函數(shù),且在(-∞,0)上是增函數(shù),設a=f(log47),b=f(log
12
3)
,c=f(0.2-0.6),則a,b,c的大小關系
a>b>c
a>b>c

查看答案和解析>>

同步練習冊答案