若函數(shù)f(x)在區(qū)間[a,b]上的值域仍為[a,b],則區(qū)間[a,b]稱為函數(shù)f(x)的一個保值區(qū)間,函數(shù)y=2sinx的保值區(qū)間的個數(shù)為( 。
A、1B、2C、3D、4
考點:函數(shù)的值域
專題:三角函數(shù)的圖像與性質(zhì)
分析:由保值區(qū)間的定義,結(jié)合函數(shù)y=2sinx的值域是[-2,2],可得[a,b]⊆[-2,2],考慮函數(shù)y=2sinx在區(qū)間[a,b]上單調(diào)性,結(jié)合a<b即可得到函數(shù)y的“保值”區(qū)間.
解答: 解:在同一坐標(biāo)系中作出函數(shù)y=2sinx和函數(shù)y=x的圖象如下圖所示:

由圖可知:函數(shù)y=2sinx的保值區(qū)間有:
[-2,0],[0,2],[-2,2]共3個,
故選:C.
點評:本題考查的知識點是正弦函數(shù)的圖象和性質(zhì),正確理解新定義“保值區(qū)間”的含義是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知log2(2m-4)+log2(n-4)=3,則m+n的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是周期為2的奇函數(shù),當(dāng)0<x<1時,f(x)=lgx,設(shè)a=f(
4
3
),b=f(
3
2
),c=f(
5
2
),則( 。
A、a<b<c
B、b<a<c
C、c<b<a
D、c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若[x]表示不超過x的最大整數(shù),執(zhí)行如圖所示的程序框圖,則輸出的S值為(  )
A、4B、5C、7D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“?x>0,x2+3x+2≥0”的否定是(  )
A、?x≤0,x2+3x+2≥0
B、?x≤0,x2+3x+2<0
C、?x>0,x2+3x+2≥0
D、?x>0,x2+3x+2<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,AB=1,BC=2,B=60°,則AC=(  )
A、
5+2
3
B、
7
C、
5-2
3
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an},{bn}的前n項和分別為Sn,Tn,且滿足nTn=(n+4)Sn,則
a8
b9
的值為(  )
A、
13
17
B、
8
9
C、
5
7
D、
8
13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=2sin(x-
π
4
)cos(x-
π
4
)+2cos2(x+
π
4
)-1,則函數(shù)的最小正周期T和它的圖象上的一條對稱軸方程分別是( 。
A、T=2π,x=
π
8
B、T=2π,x=
8
C、T=π,x=
π
8
D、T=π,x=
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

太原市啟動重污染天氣Ⅱ級應(yīng)急響應(yīng),大力發(fā)展公共交通.為了調(diào)查市民乘公交車的候車情況,交通部門從在某站臺等車的60名候車乘客中隨機抽取15人,按照他們的候車時間(單位:分鐘)作為樣本分成6組,如下表所示:
組別
候車時間 [0,3) [3,6) [6,9) [9,12) [12,15) [15,18)
人數(shù) 2 5 3 2 2 1
(Ⅰ)為了線路合理設(shè)置,估計這60名乘客中候車時間不少于12分鐘的人數(shù).
(Ⅱ)若從上表第三、四組的5人中隨機抽取2人做進一步的問卷調(diào)查,求抽到的2人恰好來自不同組的概率.

查看答案和解析>>

同步練習(xí)冊答案