【題目】設f(x)是定義在正整數(shù)集上的函數(shù),且f(x)滿足“當f(k)≤k2成立時,總可推出f(k+1)≤(k+1)2”成立”.那么,下列命題總成立的是(
A.若f(2)≤4成立,則當k≥1時,均有f(k)≤k2成立
B.若f(4)≤16成立,則當k≤4時,均有f(k)≤k2成立
C.若f(6)>36成立,則當k≥7時,均有f(k)>k2成立
D.若f(7)=50成立,則當k≤7時,均有f(k)>k2成立

【答案】D
【解析】解:對于A,當k=1時,不一定有f(k)≤k2成立;A命題錯誤;
對于B,只能得出:對于任意的k≥4,均有f(k)≥k2成立,
不能得出:任意的k≤3,均有f(k)≤k2成立;B命題錯誤;
對于C,根據(jù)逆否命題的真假性相同,由f(6)>36成立,能推出當k≤6時,均有f(k)>k2成立;C命題錯誤;
對于D,根據(jù)逆否命題的真假性相同,由f(7)=50>49,能得出對于任意的k≤7,均有f(k)>k2成立;D命題正確.
故選:D.
【考點精析】掌握四種命題間的逆否關系是解答本題的根本,需要知道交換原命題的條件和結論,所得的命題是逆命題;同時否定原命題的條件和結論,所得的命題是否命題;交換原命題的條件和結論,并且同時否定,所得的命題是逆否命題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】命題“任意的x∈R,2x4﹣x2+1<0”的否定是(
A.不存在x∈R,2x4﹣x2+1<0
B.存在x∈R,2x4﹣x2+1<0
C.對任意的x∈R,2x4﹣x2+1≥0
D.存在x∈R,2x4﹣x2+1≥0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a≠b,求證:a4+6a2b2+b4>4ab(a2+b2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在報名的5名男生和4名女生中,選取5人參加志愿者服務,要求男生、女生都有,則不同的選取方法的種數(shù)為(結果用數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a>b>0,則3a , 3b , 4a的大小關系是(
A.3a>3b>4a
B.3b<4a<3a
C.3b<3a<4a
D.3a<4a<3b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知隨機變量X,Y滿足,X+Y=8,且X~B(10,0.6),則D(X)+E(Y)=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=ax1+4(a>0,且a≠1)的圖象過一個定點,則這個定點坐標是(
A.(5,1)
B.(1,5)
C.(1,4)
D.(4,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知y=f(x)+x2是奇函數(shù),且f(1)=1,若g(x)=f(x)+2,則g(﹣1)=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列有關命題的說法正確的是( 。
A.命題“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1”
B.“m=1”是“直線x﹣my=0和直線x+my=0互相垂直”的充要條件
C.命題“x∈R,使得x2+x+1<0”的否定是:“x∈R,均有x2+x+1<0”
D.命題“已知x,y為一個三角形的兩內角,若x=y,則sinx=siny”的逆命題為真命題

查看答案和解析>>

同步練習冊答案