(2012•閘北區(qū)一模)在實數(shù)集R中,我們定義的大小關系“>”為全體實數(shù)排了一個“序”.類似的,我們在復數(shù)集C上也可以定義一個稱為“序”的關系,記為“>”.定義如下:對于任意兩個復數(shù)z1=a1+b1i,z2=a2+b2i(a1,a2,b1,b2∈R),z1>z2當且僅當“a1>a2”或“a1=a2且b1>b2”.
按上述定義的關系“>”,給出如下四個命題:
①1>i>0;
②若z1>z2,z2>z3,則z1>z3;
③若z1>z2,則,對于任意z∈C,z1+z>z2+z;
④對于復數(shù)z>0,若z1>z2,則zz1>zz2
其中所有真命題的個數(shù)為(  )>>>
分析:根據(jù)z1>z2當且僅當“a1>a2”或“a1=a2且b1>b2”,判斷各個選項中的結論是否滿足此定義,從而得出結論.
解答:解:∵任意兩個復數(shù)z1=a1+b1i,z2=a2+b2i(a1,a2,b1,b2∈R),z1>z2當且僅當“a1>a2”或“a1=a2且b1>b2”.
由于1=1+0i,i=0+1×i,0=0+0×i,故有1>i,且i>0,故①正確.
由定義可得,復數(shù)的大小具有傳遞性,故②正確.
對于③:由定義可得,復數(shù)的大小具有傳遞性正確.若z1>z2,則,對于任意z∈C,z1+z>z2+z,故③正確.
④不正確,如當 z1 =3i,z2=2i,z=i時,zz1=-3,zz2 =-2,顯然不滿足zz1>zz2
故選C.
點評:本題主要考查復數(shù)的基本概念,z1>z2 的定義,通過給變量取特殊值,舉反例來說明某個命題不正確,是一種簡單有效的方法,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•閘北區(qū)一模)曲線y=-
4-x2
(x≤0)
的長度為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•閘北區(qū)一模)已知函數(shù)f(x)=2|x-2|+ax(x∈R)有最小值.
(1)求實常數(shù)a的取值范圍;
(2)設g(x)為定義在R上的奇函數(shù),且當x<0時,g(x)=f(x),求g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•閘北區(qū)一模)若函數(shù)f(x)的圖象與對數(shù)函數(shù)y=log4x的圖象關于直線x+y=0對稱,則f(x)的解析式為f(x)=
y=-4-x
y=-4-x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•閘北區(qū)一模)方程1+x-2=0的全體實數(shù)解組成的集合為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•閘北區(qū)一模)不等式2>
1
x
的解集為
{x|x<0,或x>
1
2
}
{x|x<0,或x>
1
2
}

查看答案和解析>>

同步練習冊答案