【題目】如圖,三棱錐,側(cè)棱,底面三角形為正三角形,邊長(zhǎng)為,頂點(diǎn)在平面上的射影為,有,且.

(Ⅰ)求證: 平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)線(xiàn)段上是否存在點(diǎn)使得⊥平面,如果存在,求的值;如果不存在,請(qǐng)說(shuō)明理由.

【答案】(Ⅰ)見(jiàn)解析;(Ⅱ);(Ⅲ)見(jiàn)解析.

【解析】試題分析:(1)證線(xiàn)面平行,則要在平面找一線(xiàn)與之平行即可,顯然分析即得證,(2)求二面角可借助空間直角坐標(biāo)系將兩個(gè)平面的法向量一一求出,再根據(jù)向量的數(shù)量積公式便可求解(3)存在問(wèn)題可以根據(jù)結(jié)論反推即可,容易得因?yàn)?/span>,所以不垂直,故不存在

試題解析:

(Ⅰ)因?yàn)?/span>,且, ,所以,

所以.

因?yàn)?/span>為正三角形,所以,

又由已知可知為平面四邊形,所以.

因?yàn)?/span>平面, 平面

所以平面.

(Ⅱ)由點(diǎn)在平面上的射影為可得平面,

所以, .

分別為建立空間直角坐標(biāo)系,則由已知可知 , , .

平面的法向量,

設(shè)為平面的一個(gè)法向量,則

可得

,則,所以平面的一個(gè)法向量,

所以

所以二面角的余弦值為.

(Ⅲ)由(Ⅱ)可得,

因?yàn)?/span>,

所以不垂直,

所以在線(xiàn)段上不存在點(diǎn)使得⊥平面.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線(xiàn)C1 (α為參數(shù))與曲線(xiàn)C2:ρ=4sinθ
(1)寫(xiě)出曲線(xiàn)C1的普通方程和曲線(xiàn)C2的直角坐標(biāo)方程;
(2)求曲線(xiàn)C1和C2公共弦的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+)(ω>0)的部分圖象如圖所示,下面結(jié)論正確的個(gè)數(shù)是(
①函數(shù)f(x)的最小正周期是2π
②函數(shù)f(x)的圖象可由函數(shù)g(x)=sin2x的圖象向左平移 個(gè)單位長(zhǎng)度得到
③函數(shù)f(x)的圖象關(guān)于直線(xiàn)x= 對(duì)稱(chēng)
④函數(shù)f(x)在區(qū)間[ ]上是增函數(shù).

A.3
B.2
C.1
D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn)和直線(xiàn),圓C與直線(xiàn)相切,并且圓心C關(guān)于點(diǎn)的對(duì)稱(chēng)點(diǎn)在圓C上,直線(xiàn)軸相交于點(diǎn)

(Ⅰ)求圓心C的軌跡E的方程;

(Ⅱ)過(guò)點(diǎn)且與直線(xiàn)不垂直的直線(xiàn)與圓心C的軌跡E相交于點(diǎn)A、B,面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),是常數(shù).

(Ⅰ)若,且曲線(xiàn)的切線(xiàn)經(jīng)過(guò)坐標(biāo)原點(diǎn),求該切線(xiàn)的方程;

(Ⅱ)討論的零點(diǎn)的個(gè)數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了響應(yīng)教育部頒布的《關(guān)于推進(jìn)中小學(xué)生研學(xué)旅行的意見(jiàn)》,某校計(jì)劃開(kāi)設(shè)八門(mén)研學(xué)旅行課程,并對(duì)全校學(xué)生的選擇意向進(jìn)行調(diào)查(調(diào)查要求全員參與,每個(gè)學(xué)生必須從八門(mén)課程中選出唯一一門(mén)課程).本次調(diào)查結(jié)果整理成條形圖如下.

上圖中,已知課程為人文類(lèi)課程,課程為自然科學(xué)類(lèi)課程.為進(jìn)一步研究學(xué)生選課意向,結(jié)合上面圖表,采取分層抽樣方法從全校抽取的學(xué)生作為研究樣本組(以下簡(jiǎn)稱(chēng)“組M”).

(Ⅰ)在“組M”中,選擇人文類(lèi)課程和自然科學(xué)類(lèi)課程的人數(shù)各有多少?

(Ⅱ)為參加某地舉辦的自然科學(xué)營(yíng)活動(dòng),從“組M”所有選擇自然科學(xué)類(lèi)課程的同學(xué)中隨機(jī)抽取4名同學(xué)前往,其中選擇課程F或課程H的同學(xué)參加本次活動(dòng),費(fèi)用為每人1500元,選擇課程G的同學(xué)參加,費(fèi)用為每人2000元.

(ⅰ)設(shè)隨機(jī)變量表示選出的4名同學(xué)中選擇課程的人數(shù),求隨機(jī)變量的分布列;

(ⅱ)設(shè)隨機(jī)變量表示選出的4名同學(xué)參加科學(xué)營(yíng)的費(fèi)用總和,求隨機(jī)變量的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 公差d≠0,且S3+S5=50,a1 , a4 , a13成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè){ }是首項(xiàng)為1公比為2的等比數(shù)列,求數(shù)列{bn}前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)l的極坐標(biāo)方程為ρsin(θ+ )=
(1)在極坐標(biāo)系下寫(xiě)出θ=0和θ= 時(shí)該直線(xiàn)上的兩點(diǎn)的極坐標(biāo),并畫(huà)出該直線(xiàn);
(2)已知Q是曲線(xiàn)ρ=1上的任意一點(diǎn),求點(diǎn)Q到直線(xiàn)l的最短距離及此時(shí)Q的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)直線(xiàn)4x﹣3y+12=0的傾斜角為A
(1)求tan2A的值;
(2)求cos( ﹣A)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案