【題目】七巧板是一種古老的中國傳統(tǒng)智力玩具,是由七塊板組成的.而這七塊板可拼成許多圖形,例如:三角形、不規(guī)則多邊形、各種人物、動物、建筑物等,清陸以湉《冷廬雜識》寫道:近又有七巧圖,其式五,其數(shù)七,其變化之式多至千余.在18世紀(jì),七巧板流傳到了國外,至今英國劍橋大學(xué)的圖書館里還珍藏著一部《七巧新譜》.若用七巧板拼成一只雄雞,在雄雞平面圖形上隨機(jī)取一點(diǎn),則恰好取自雄雞雞尾(陰影部分)的概率為( )
A. B. C. D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在直角梯形中,為的中點(diǎn),四邊形為正方形,將沿折起,使點(diǎn)到達(dá)點(diǎn),如圖(2),為的中點(diǎn),且,點(diǎn)為線段上的一點(diǎn).
(1)證明:;
(2)當(dāng)與夾角最小時,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中.
(Ⅰ)當(dāng)為偶函數(shù)時,求函數(shù)的極值;
(Ⅱ)若函數(shù)在區(qū)間上有兩個零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)B(0,-2)和橢圓M:.直線l:y=kx+1與橢圓M交于不同兩點(diǎn)P,Q.
(Ⅰ)求橢圓M的離心率;
(Ⅱ)若,求△PBQ的面積;
(Ⅲ)設(shè)直線PB與橢圓M的另一個交點(diǎn)為C,當(dāng)C為PB中點(diǎn)時,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面為梯形,底面,,,,.
(1)求證:平面平面;
(2)設(shè)為上一點(diǎn),滿足,若直線與平面所成的角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】條件
(1)條件:復(fù)數(shù),指明是的說明條件?若滿足條件,記,求
(2)若上問中,記時的在平面直角坐標(biāo)系的點(diǎn)存在過點(diǎn)的拋物線頂點(diǎn)在原點(diǎn),對稱軸為坐標(biāo)軸,求拋物線的解析式。
(3)自(2)中點(diǎn)出發(fā)的一束光線經(jīng)拋物線上一點(diǎn)反射后沿平行于拋物線對稱軸方向射出,求:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,e為自然對數(shù)的底數(shù)).
(1)若,求的最大值;
(2)若在R上單調(diào)遞減,
①求a的取值范圍;
②當(dāng)時,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|ax-2|,不等式f(x)≤4的解集為{x|-2≤x≤6}.
(1)求實(shí)數(shù)a的值;
(2)設(shè)g(x)=f(x)+f(x+3),若存在x∈R,使g(x)-tx≤2成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正三棱柱的底面邊長是2,側(cè)棱長是4,是的中點(diǎn).是中點(diǎn),是中點(diǎn),是中點(diǎn),
(1)計(jì)算異面直線與所成角的余弦值
(2)求證:平面
(3)求證:面面
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com