已知變量x,y滿足約束條件
x+y≤1
2x+y≤2
x≥0,y≥0
,則目標(biāo)函數(shù)z=
1
2
x+y
的最大值為
1
1
分析:先畫出約束條件
x+y≤1
2x+y≤2
x≥0,y≥0
,的可行域,再求出可行域中各角點(diǎn)的坐標(biāo),將各點(diǎn)坐標(biāo)代入目標(biāo)函數(shù)的解析式,分析后易得目標(biāo)函數(shù)z=
1
2
x+y
的最大值.
解答:解:由約束條件
x+y≤1
2x+y≤2
x≥0,y≥0
,得如圖所示的三角形區(qū)域,
三個(gè)頂點(diǎn)坐標(biāo)為A(0,1),B(1,0),O(0,0)
將三個(gè)代入得z的值分別為1,
1
2
,0.
直線z=
1
2
x+y
過(guò)點(diǎn)A (0,1)時(shí),z取得最大值為1;
故答案為:1.
點(diǎn)評(píng):在解決線性規(guī)劃的小題時(shí),我們常用“角點(diǎn)法”,其步驟為:①由約束條件畫出可行域⇒②求出可行域各個(gè)角點(diǎn)的坐標(biāo)⇒③將坐標(biāo)逐一代入目標(biāo)函數(shù)⇒④驗(yàn)證,求出最優(yōu)解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:同升湖國(guó)際實(shí)驗(yàn)學(xué)校2008屆高三數(shù)學(xué)文科第五次月考試卷、人教版 人教版 題型:022

已知變量x,y滿足約速條件,則目標(biāo)函數(shù)Z=2x+y的最大值為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知變量x,y滿足約速條件則目標(biāo)函數(shù)的最大值為(    )    

A.3                             B.4                          C.9                             D.12

查看答案和解析>>

同步練習(xí)冊(cè)答案