【題目】已知
(1)當時,求的最大值;
(2)若存在使,得關(guān)于的方程有三個不相同的實數(shù)根,求實數(shù)的取值范圍.
【答案】(1);(2).
【解析】
(1)表示此時函數(shù)的解析式,求導分析單調(diào)性,即可求得最值.
(2)由于為分段函數(shù),故分類討論兩段函數(shù)交點個數(shù),將問題可轉(zhuǎn)化為的根存在三個,記,,令,令,分兩段求導分析函數(shù)圖象特征,進而判定交點個數(shù),求得參數(shù)取值范圍.
(1)當時,,即
當時,,單調(diào)遞增;當時,,單調(diào)遞減,
所以
(2),經(jīng)驗證不是方程的根,
所以原方程的根等價于的根,
記,,令,,單調(diào)遞減,
令,即,
令為極大值點,其在上單調(diào)遞增,在上單調(diào)遞減,
當,,
所以在無實數(shù)根
當時,……①
有兩個極值點,且,即,
故所以,
存在使①有三個實根所以滿足條件.
當,的分子中,,顯然,所以①僅有一個正根,
要使有兩個負根,則﹐
綜上所﹐即.
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,,動圓與圓、都相切,則動圓的圓心軌跡的方程為________;直線與曲線僅有三個公共點,依次為、、,則的最大值為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標中,圓,圓。
(Ⅰ)在以O為極點,x軸正半軸為極軸的極坐標系中,分別寫出圓的極坐標方程,并求出圓的交點坐標(用極坐標表示);
(Ⅱ)求圓的公共弦的參數(shù)方程。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,橢圓的右頂點為,左、右焦點分別為、,過點
且斜率為的直線與軸交于點, 與橢圓交于另一個點,且點在軸上的射影恰好為點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過點且斜率大于的直線與橢圓交于兩點(),若,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】△ABC在內(nèi)角A、B、C的對邊分別為a,b,c,已知a=bcosC+csinB.
(Ⅰ)求B;
(Ⅱ)若b=2,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】年初,新冠病毒引發(fā)的肺炎疫情在全球肆虐,為了有效地控制病毒的傳播,某醫(yī)院組織專家統(tǒng)計了該地區(qū)名患者新冠病毒潛伏期的相關(guān)信息,數(shù)據(jù)經(jīng)過匯總整理得到如下圖所示的頻率分布直方圖(用頻率作為概率).潛伏期不高于平均數(shù)的患者,稱為“短潛伏者”,潛伏期高于平均數(shù)的患者,稱為“長潛伏者”.
(1)求這名患者潛伏期的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)和眾數(shù);
(2)為研究潛伏期與患者年齡的關(guān)系,得到如下列聯(lián)表,請將列聯(lián)表補充完整,并根據(jù)列聯(lián)表判斷是否有的把握認為潛伏期長短與患者年齡有關(guān);
短潛伏者 | 長潛伏者 | 合計 | |
歲及以上 | |||
歲以下 | |||
合計 |
(3)研究發(fā)現(xiàn),某藥物對新冠病毒有一定的抑制作用,需要從這人中分層選取位歲以下的患者做Ⅰ期臨床試驗,再從選取的人中隨機抽取兩人做Ⅱ期臨床試驗,求兩人中恰有人為“短潛伏者”的概率.
附表及公式:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某科研課題組通過一款手機APP軟件,調(diào)查了某市1000名跑步愛好者平均每周的跑步量(簡稱“周跑量”),得到如下的頻數(shù)分布表
周跑量(km/周) | |||||||||
人數(shù) | 100 | 120 | 130 | 180 | 220 | 150 | 60 | 30 | 10 |
(1)在答題卡上補全該市1000名跑步愛好者周跑量的頻率分布直方圖:
注:請先用鉛筆畫,確定后再用黑色水筆描黑
(2)根據(jù)以上圖表數(shù)據(jù)計算得樣本的平均數(shù)為,試求樣本的中位數(shù)(保留一位小數(shù)),并用平均數(shù)、中位數(shù)等數(shù)字特征估計該市跑步愛好者周跑量的分布特點
(3)根據(jù)跑步愛好者的周跑量,將跑步愛好者分成以下三類,不同類別的跑者購買的裝備的價格不一樣,如下表:
周跑量 | 小于20公里 | 20公里到40公里 | 不小于40公里 |
類別 | 休閑跑者 | 核心跑者 | 精英跑者 |
裝備價格(單位:元) | 2500 | 4000 | 4500 |
根據(jù)以上數(shù)據(jù),估計該市每位跑步愛好者購買裝備,平均需要花費多少元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在三棱柱中,平面,,.
(1)求證:平面;
(2)若是棱的中點,在棱上是否存在一點,使得//平面?若存在,請確定點的位置:若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com