【題目】選修4-4:坐標系與參數(shù)方程

已知直線為參數(shù),曲線為參數(shù)

1設(shè)相交于,兩點,;

2若把曲線上各點的橫坐標壓縮為原來的,縱坐標壓縮為原來的,得到曲線設(shè)點是曲線上的一個動點,求它到直線距離的最小值

【答案】1;2.

【解析】

試題分析:本題主要考查參數(shù)方程的基本性質(zhì):1將直線和曲線轉(zhuǎn)化為普通方程,聯(lián)立直線和曲線,求出交點坐標,利用兩點間距離公式便可求出;2根據(jù)坐標變換得出曲線的方程,利用點到直線的距離公式,結(jié)合三角函數(shù)的最值便可得到點到直線距離的最小值.

試題解析:1的普通方程為,的普通方程為,

聯(lián)立方程組解得的交點為,則

2的參數(shù)方程為為參數(shù),故點的坐標是,

從而點到直線的距離是

由此當時,取得最小值,且最小值為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,直線.

(1)若直線與圓交于不同的兩點,當時,求的值.

(2)若是直線上的動點,過作圓的兩條切線,切點為究:直線是否過定點;

(3)若為圓的兩條相互垂直的弦,垂足為,求四邊形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知ABC是銳角三角形,cos22A+sin2A=1.

)求角A;

)若BC=1,B=x,求ABC的周長f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列,滿足:,

(1)設(shè),求數(shù)列的通項公式;

(2)設(shè),不等式恒成立時,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中.

討論的單調(diào)區(qū)間;

若直線的圖象恒在函數(shù)圖像的上方,求的取值范圍;

若存在,,使得,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,有一段河流,河的一側(cè)是以O為圓心,半徑為米的扇形區(qū)域OCD,河的另一側(cè)是一段筆直的河岸l,岸邊有一煙囪AB(不計B離河岸的距離),且OB的連線恰好與河岸l垂直,設(shè)OB與圓弧的交點為E.經(jīng)測量,扇形區(qū)域和河岸處于同一水平面,在點C,點O點E處測得煙囪AB的仰角分別為,

(1)求煙囪AB的高度;

(2)如果要在CE間修一條直路,求CE的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的導函數(shù)為,.

(1)當時,求函數(shù)的單調(diào)區(qū)間;

(2)若對滿足的一切的值,都有,求實數(shù)的取值范圍;

(3)若對一切恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圖,已知四棱錐中,底面為菱形,平面,,,分別是,的中點.

I)證明:平面;

II)取,在線段上是否存在點,使得與平面所成最大角的正切值為,若存在,請求出點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,點也為拋物線的焦點,過點的直線交拋物線兩點.

(Ⅰ)若點滿足,求直線的方程;

(Ⅱ)為直線上任意一點,過點的垂線交橢圓兩點,求的最小值.

查看答案和解析>>

同步練習冊答案