如圖,在△ABC中,∠C為鈍角,點(diǎn)E,H分別是邊AB上的點(diǎn),點(diǎn)K和M分別是邊
AC和BC上的點(diǎn),且AH=AC,EB=BC,AE=AK,BH=BM.
(Ⅰ)求證:E、H、M、K四點(diǎn)共圓;
(Ⅱ)若KE=EH,CE=3,求線段KM的長(zhǎng).

【答案】分析:(Ⅰ)先由AC=AH,AK=AE得四邊形CHEK為等腰梯形,利用等腰梯形的對(duì)角互補(bǔ)可得C,H,E,K四點(diǎn)共圓;同理C,E,H,M四點(diǎn)共圓,即可得E,H,M,K均在點(diǎn)C,E,H所確定的圓上.
(Ⅱ)先由(1)得E,H,M,C,K五點(diǎn)共圓,再利用CEHM為等腰梯形得EM=HC,以及由KE=EH可得∠KME=∠ECH,推得△MKE≌△CEH,即可得線段KM的長(zhǎng).
解答:解:(Ⅰ)證明:連接CH,∵AC=AH,AK=AE,∴四邊形CHEK為等腰梯形,
注意到等腰梯形的對(duì)角互補(bǔ),
故C,H,E,K四點(diǎn)共圓,(3分)
同理C,E,H,M四點(diǎn)共圓,
即E,H,M,K均在點(diǎn)C,E,H所確定的圓上,證畢.(5分)
(Ⅱ)連接EM,
由(1)得E,H,M,C,K五點(diǎn)共圓,(7分)∵CEHM為等腰梯形,∴EM=HC,
故∠MKE=∠CEH,
由KE=EH可得∠KME=∠ECH,
故△MKE≌△CEH,
即KM=EC=3為所求.(10分)
點(diǎn)評(píng):本題第一問(wèn)考查四點(diǎn)共圓.證明四點(diǎn)共圓的常用方法有:對(duì)角互補(bǔ);外角等于內(nèi)對(duì)角;證明四點(diǎn)在某三點(diǎn)確定的圓上等等.本題用的是方法三.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,已知∠ABC=90°,AB上一點(diǎn)E,以BE為直徑的⊙O恰與AC相切于點(diǎn)D,若AE=2cm,
AD=4cm.
(1)求:⊙O的直徑BE的長(zhǎng);
(2)計(jì)算:△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,D是邊AC上的點(diǎn),且AB=AD,2AB=
3
BD,BC=2BD,則sinC的值為(  )
A、
3
3
B、
3
6
C、
6
3
D、
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,設(shè)
AB
=a
AC
=b
,AP的中點(diǎn)為Q,BQ的中點(diǎn)為R,CR的中點(diǎn)恰為P.
(Ⅰ)若
AP
=λa+μb
,求λ和μ的值;
(Ⅱ)以AB,AC為鄰邊,AP為對(duì)角線,作平行四邊形ANPM,求平行四邊形ANPM和三角形ABC的面積之比
S平行四邊形ANPM
S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,∠B=45°,D是BC邊上的一點(diǎn),AD=5,AC=7,DC=3.
(1)求∠ADC的大;
(2)求AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,已知
BD
=2
DC
,則
AD
=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案