動點的坐標在其運動過程中
總滿足關系式.
(1)點的軌跡是什么曲線?請寫出它的標準方程;
(2)已知直線的軌跡交于A、B兩點,且OA⊥OB(O為原點),求 的值.
(1)(6分)橢圓:
(2) 

分析:(1)根據(jù),可得(x,y)與(-,0),(,0)的距離之和等于常數(shù)4,由橢圓的定義可知點M的軌跡,從而可得橢圓的方程;
(2)直線y=x+t與M的軌跡方程聯(lián)立,消去y,利用韋達定理及OA⊥OB,即可求得t的值。
解答:
(1)∵
∴(x,y)與(-,0),(,0)的距離之和等于常數(shù)4,
由橢圓的定義可知:此點的軌跡為焦點在x軸上的橢圓,且a=2,c=,
∴b=1,故橢圓的方程為:x2/4+y2=1;
(2)直線y=x+t與M的軌跡方程聯(lián)立,消去y可得5x2+8tx+4t2-4=0
設A(x1,y1),B(x2,y2),則x1+x2=-8t/5,x1x2=(4t2-4)/5,
∴y1y2=(x1+t)(x2+t)=-4/5+1/5t2
∵OA⊥OB
∴x1x2+y1y2=(4t2-4)/5-4/5+1/5t2=0

點評:本題考查軌跡方程,考查直線與橢圓的位置關系,求得橢圓的方程,正確運用韋達定理是關鍵。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,已知直線l:y=-1,定點F(0,1),過平面內(nèi)動點P作PQ丄l于Q點,且
(I )求動點P的軌跡E的方程;
(II)過點P作圓的兩條切線,分別交x軸于點B、C,當點P的縱坐標y0>4時,試用y0表示線段BC的長,并求ΔPBC面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系內(nèi)已知兩點A(-1,0)、B(1,0),若將動點P(x,y)的橫坐標保持不變,縱坐標擴大到原來的倍后得到點Q(x,y),且滿足·=1.
(Ⅰ)求動點P所在曲線C的方程;
(Ⅱ)過點B作斜率為-的直線l交曲線C于M、N兩點,且++=,試求△MNH的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設曲線在點(1,)處的切線與直線平行,則(   )
A.1B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

軸上,且,則點的坐標為      

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知m∈R,直線l:mx-(m2+1)y=4m和圓C:x2+y2-8x+4y+16=0.
(1)求直線l斜率的取值范圍;
(2)直線l能否將圓C分割成弧長的比值為的兩段圓弧?為什么?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的中心在原點,焦點在x軸上,橢圓的短軸端點和焦點所圍成的四邊形的正方形,且橢圓上的點到焦點的距離的最大值為+1,
(1)求橢圓的標準方程
(2)過橢圓的左焦點F且不與坐標軸垂直的直線交橢圓于A、B兩點,線段AB的垂直平分線與x軸交于G點,求G點的橫坐標的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)已知平面上一定點C(4,0)和一定直線為該平面上一動點,作,垂足為Q,且(
(Ⅰ)問點P在什么曲線上?并求出該曲線的方程;
(Ⅱ)設直線與(1)中的曲線交于不同的兩點A、B,是否存在實數(shù)k,使得以線段AB為直徑的圓經(jīng)過點D(0,-2)?若存在,求出k的值,若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

是橢圓上位于軸上方的一點,F(xiàn)是橢圓的左焦點,為原點,的中點,且,則直線的斜率為          

查看答案和解析>>

同步練習冊答案