求函數(shù)y=
ax2+bx+c
為奇函數(shù)的時(shí),C=
 
分析:根據(jù)函數(shù)y=
ax2+b
x+c
為奇函數(shù),知道:f(-x)=-f(x)恒成立,即
a(-x)2+b
-x+c
=-
ax2+b
x+c
,即-x+c=-x-c,解可得答案.
解答:解:∵函數(shù)y=
ax2+b
x+c
為奇函數(shù)
∴f(-x)=-f(x)
a(-x)2+b
-x+c
=-
ax2+b
x+c
,
即-x+c=-x-c
c=0
故答案為:0
點(diǎn)評(píng):本題考查了奇函數(shù)的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=ax2+(b+
2
3
)x+c+3
是偶函數(shù)且圖象經(jīng)過坐標(biāo)原點(diǎn),記函數(shù)f(x)=
x
•(ax2+bx+c)

(I)求b、c的值;
(II)當(dāng)a=
1
5
時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(III)試討論函數(shù)f(x)的圖象上垂直于y軸的切線的存在情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)y=x2-2x-1的圖象的頂點(diǎn)為A.二次函數(shù)y=ax2+bx的圖象與x軸交于原點(diǎn)O及另一點(diǎn)C,它的頂點(diǎn)B在函數(shù)y=x2-2x-1的圖象的對稱軸上.
(1)求點(diǎn)A與點(diǎn)C的坐標(biāo);
(2)當(dāng)四邊形AOBC為菱形時(shí),求函數(shù)y=ax2+bx的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二次函數(shù)f(x)=ax2+bx+c的圖象過A(-4,5)、B(-1,4)、C(0,3)三點(diǎn).
(1)試求這個(gè)二次函數(shù)的解析表達(dá)式;
(2)試求出函數(shù)y=|ax2+bx+c|的零點(diǎn),并畫出其圖象(草圖);
(3)根據(jù)圖象寫出函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:丹東二模 題型:解答題

已知二次函數(shù)y=ax2+(b+
2
3
)x+c+3
是偶函數(shù)且圖象經(jīng)過坐標(biāo)原點(diǎn),記函數(shù)f(x)=
x
•(ax2+bx+c)

(I)求b、c的值;
(II)當(dāng)a=
1
5
時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(III)試討論函數(shù)f(x)的圖象上垂直于y軸的切線的存在情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年江蘇省常州市部分學(xué)校高二(下)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,已知二次函數(shù)y=x2-2x-1的圖象的頂點(diǎn)為A.二次函數(shù)y=ax2+bx的圖象與x軸交于原點(diǎn)O及另一點(diǎn)C,它的頂點(diǎn)B在函數(shù)y=x2-2x-1的圖象的對稱軸上.
(1)求點(diǎn)A與點(diǎn)C的坐標(biāo);
(2)當(dāng)四邊形AOBC為菱形時(shí),求函數(shù)y=ax2+bx的關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案